FTIR Spectral Study of Intramolecular Hydrogen Bonding in Thromboxane $\mathbf{A}_{\mathbf{2}}$ Receptor Antagonist S-145 and Related Compounds. Part 2. \dagger

Mamoru Takasuka,* Masumi Yamakawa, and Mitsuaki Ohtani Shionogi Research Laboratories, Fukushima-ku, Osaka 553, Japan

Abstract

The FTIR spectra of thromboxane A_{2} receptor antagonists, a S-145 analogue (1), \ddagger ONO-3708 (2), a 13-APA analogue (3), SQ-29548 (4), and EP-045 (5), and related compounds have been measured in dilute CCl_{4} and CHCl_{3} solutions. The spectra were subjected to curve analysis in order to separate overlapping absorption bands. For (1)-(5), intramolecular hydrogen bonds involving twelve-, fourteen-, twelve-, thirteen-, and thirteen-membered rings are found between a carboxy group of the α-side chain and a functional group of the ω-side chain, respectively. In (3)-(5), these hydrogen bonds are also found to be of a zwitterion form. The formation ratio (ρ) of the intramolecular hydrogen bond in CCl_{4} solution show high values of 85 for (1), 78 for (2), 75 for (3), 89 for (4), and 96% for (5). On the basis of these findings on the intramolecular hydrogen bonds, the conformations of (1)-(5) have been identified and are found to be similar.

Thromboxane $\mathrm{A}_{2}\left(\mathrm{TXA}_{2}\right)^{1}$ is a very potent inducer of blood platelet aggregation and of contraction of arterial smooth muscle. ${ }^{2}$ TXA $_{2}$ receptor antagonists are promising as new medicines or preventives for cardio- and cerebro-vascular diseases. ${ }^{3}$ To carry out drug design and explain the onset mechanism of physiological activity, the active conformation of these antagonists in the TXA_{2} receptor must be known. The conformer preference for the TXA 2 antagonist having α - and ω side chains is generally governed by the environment of the active site of the TXA_{2} receptor. However, this environment is not known, despite the fact that this receptor is found on circulating platelets and vasculature.

Recently, a non-polar hydrocarbon phase was reported to be suitable as the environment for the active site of the TXA_{2} receptor; ${ }^{4}$ the relative permittivity of non-polar hydrocarbons is $c a$. 2. In a previous paper, ${ }^{5}$ we reported the conformations of the TXA_{2} receptor agonist $\mathrm{U}-46619^{6}$ and antagonists $\mathrm{S}-145^{7}$ and $\mathrm{BM}-13177^{8}$ in dilute CCl_{4} and CHCl_{3} solutions, assuming the existence of a hole in a protein as the binding site in the TXA_{2} receptor because the continuous permittivity value of the protein is $3.5,{ }^{9}$ which is intermediate between the values of CCl_{4} and CHCl_{3} solvents. For these compounds, an analogous result has been obtained by conformational analyses using molecular mechanics and molecular orbital calculations. ${ }^{10}$

The typical TXA_{2} receptor agonists and antagonists are shown in Figure 1, together with the related compounds. The conformations of the α - and ω-side chains in TXA $_{2}$, the TXA $_{2}$ receptor agonists $\mathrm{U}-44069,{ }^{6} 9,11$-Azo- $\mathrm{PGH}_{2},{ }^{11}$ and $\mathrm{STA}_{2},{ }^{12}$ and the antagonist $\mathrm{PTA}_{2}{ }^{13}$ are presumed to be almost the same as those found for $\mathrm{U}-46619$ in CCl_{4} and CHCl_{3} solutions ${ }^{5}$ because the two side chains and their configurations in all these compounds are the same as those of U-46619. However, no information has so far been available on the exact conformation of the side chains for the TXA_{2} antagonists (1), ${ }^{14} \mathrm{ONO}-3708$ (2), ${ }^{15}$ 13-APA, ${ }^{16}$ the 13-APA analogue (3), SQ-29548 (4), ${ }^{17}$ and EP045 (5) ${ }^{18}$ in those solutions. Of them, (1) with its potent inhibitory activity against platelet aggregation and with no partial agonistic activity was prepared in our laboratory. ${ }^{14}$ Because the side chains and their configurations in (1) are the same as those of $\mathrm{S}-145$, we became interested in comparing the conformations in both compounds in CCl_{4} and CHCl_{3} solutions from the standpoint of drug design. In order to determine the conformations of (1)-(5) in those solutions, we carried out FTIR spectra measurements for (1)-(6), (8), (9),
model compounds (10)-(14) having one functional group, and $1: 1$ mixtures of (10) and (7) or (11)-(14) in dilute CCl_{4} and CHCl_{3} solutions and for (3)-(5) and a $1: 1$ mixture of (10) and (13) in a highly concentrated solution. Full optimization curve analysis was applied to all spectra. In this paper, we examine the conformations stabilized by the intramolecular hydrogen bonds observed in (1)-(5) and discuss the conformational resemblance between the compounds. To help determine the conformation about a $\mathrm{C}(12)-\mathrm{C}(13)$ bond in $\mathrm{U}-46619$, the geometry of model compound (15) was optimized by MINDO/3 and AM1 methods.

(15)

Experimental

Compounds (1)-(9) were either synthesized by us or supplied by Seno and Hagishita. Compounds (10)-(14) were commercially available. FTIR spectra were recorded on a Nicolet 20 SXB FTIR spectrometer at $27^{\circ} \mathrm{C}$. Purification of $\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}$, and CDCl_{3}, operations for their solutions, and curve-fitting calculations for peak separation were as previously described. ${ }^{5}$ Spectral parameters were obtained by curve-fitting calculation. Because the overtone and combination bands in the region of $3500-3200 \mathrm{~cm}^{-1}$ are very weak, ${ }^{19}$ they were ignored in this calculation. In the Tables, $v, \varepsilon, \Delta v_{1 / 2}$, and A are the band frequency, the molar absorption coefficient, the band width at half-intensity, and the integrated intensity, respectively. The $v_{\mathrm{OH}}, v_{\mathrm{NH}}, v_{\mathrm{NH}_{2}}{ }^{+}, v_{\mathrm{C}=\mathrm{O}}, v_{\mathrm{asCO}_{2}}{ }^{-}$, and $v_{\mathrm{sCO}_{2}}{ }^{-}$bands show OH , $\mathrm{NH}, \mathrm{NH}_{2}{ }^{+}, \mathrm{C}=\mathrm{O}$, antisymmetric $\mathrm{CO}_{2}{ }^{-}$, and symmetric $\mathrm{CO}_{2}{ }^{-}$ stretching vibration bands, respectively, and a $\delta_{\mathrm{NH}_{2}{ }^{+}}$band shows $\mathrm{NH}_{2}{ }^{+}$in-plane bending band. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Varian LX-200 FT spectrometer at $23^{\circ} \mathrm{C}$. The MINDO $/ 3^{20}$ and AM 1^{21} calculations were carried out on a VAX 6320 computer using the QCPE program No. 506 (AMPAC).

[^0]
TXA ${ }_{2}$ R agonist

TXA 2 R antagonist

PTA ${ }_{2}$

BM-13177

S-145

(1)

(6): $\mathrm{R}=\mathrm{CH}_{3}$

13-APA

(3): $\mathrm{R}=\mathrm{H}$
(7): $\mathrm{R}=\mathrm{CH}_{3}$
α-Side chain analogue
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CO}_{2} \mathrm{H}$
(10)
(9): $\mathrm{R}=\mathrm{CH}_{3}$
a-Side chain analogue

(11)

(12)
$\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right]_{2} \mathrm{NH}$
(13)

(14)

Figure 1. Typical TXA_{2} receptor agonists and antagonists and related compounds.

Results and Discussion

The spectral parameters obtained for dilute CCl_{4} and CHCl_{3} solutions of (1)-(5) and the assignments of absorption bands are shown in Table 1, together with the estimated ratio (N) of the non-intramolecular hydrogen-bonded molecules. In oder to confirm these assignments for (2), (4), and (5), the FTIR spectra of their methyl esters (6), (8), and (9) were measured for these solutions and the spectral parameters and the assignments are also shown in Table 2, together with the N values. When the intramolecular hydrogen bonding is to be considered, the amount of intermolecular hydrogen-bonded molecules between the functional groups of the α - and/or ω-side chains in (1)-(9) needs to be known, although there is little possibility of intermolecular hydrogen bonds being due to the formation of intramolecular hydrogen bonds. Thus, we carried out the next examination, but compounds having a methyl ester group were excluded because of weak hydrogen bonding interaction ability. ${ }^{22}$
tures of their Compounds.--The spectral parameters obtained for the model compounds and the mixtures are shown in Table 3; the parameters of the mixture corresponding to (1) are not tabulated, because it has been reported ${ }^{5}$ that the mixture does not form the intermolecular hydrogen bond between (10) and ± 2-exo-propylbicyclo[2.2.1]hept-3-endo-(phenylsulphonyl)amine. The mixtures of (10) and (11) or (12), (10) and (13), and (10) and (14) correspond to the functional groups in (2), (3), and (4) or (5), respectively. The measurements were conducted in CCl_{4} and CHCl_{3} solutions at almost the same concentration as (1)-(5). The FTIR spectra of the mixtures of (10) and (8) or (9) were also measured in the same manner, although their parameters were omitted from Table 3.

In comparison with the corresponding spectral parameters in the model compounds, (8) and (9), no changes were found for the mixtures except for the mixture of (10) and (13) in CHCl_{3} solution; the parameters for the mixtures agreed well with the sum of those of the corresponding two compounds. These results indicate that the mixtures, except for the mixture of (10) and (13) in CHCl_{3} solution, do not form the intermolecular

Figure 2. FTIR spectra of (1) at $3.1907 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ in CCl_{4} solution in a 5.0 cm cell and the results of peak separation of their spectra.
hydrogen bond between two kinds of compounds in this case. This also indicates that the changes of FTIR spectra shown in Tables 1 and 2, except for (3) in CHCl_{3} solution, are attributable to the formation of intramolecular hydrogen bonding.

For the mixture of (10) and (13) in CHCl_{3} solution, 22% of the $v_{\mathrm{c}=\mathrm{o}}$ bands, which are due to a carboxy group in (10), disappeared, and the $\mathrm{VascO}_{2}{ }^{-}$band was observed at 1688 cm^{-1}, indicative of intermolecular hydrogen bonding of the zwitterion form as mentioned below. For (3) in CHCl_{3} solution, the formation ratio of the intramolecular hydrogen bonding of the zwitterion form showed the high value of 82%. This indicates that the greater part of the changes of FTIR spectra in (3) in CHCl_{3} solution are attributable to the formation of intramolecular hydrogen bonding, since there is little possibility of intermolecular hydrogen bonding due to the formation of intramolecular hydrogen bonding.

Because (10) forms a dimer of 14% in CCl_{4} and 9% in CHCl_{3} solutions at the concentrations measured, dimerization may occur in their solutions of (1)-(5). In order to estimate the reliable $\rho(=100-N-\sigma)$ value, the amount of dimer of these compounds needed to be known. Regression analysis was done between the concentration ($c_{\mathrm{f}}=c N / 100$) of molecules having a free carboxy group and the ratio ($\sigma \%$) of dimer using the spectral parameters of (10) reported by us, ${ }^{5}$ where c is the total concentration. The analysis gave good relationships which can be expressed as equation (1) for CCl_{4} and (2) for CHCl_{3} solutions, where n is the number of data points and r is the correlation coefficient.

$$
\begin{align*}
& \log c_{\mathrm{f}}=0.245 \sigma^{1 / 2}-5.492(n=6, r=0.998) \tag{1}\\
& \log c_{\mathrm{f}}=0.250 \sigma^{1 / 2}-4.258(n=7, r=0.996) \tag{2}
\end{align*}
$$

Assuming that the free molecules of $N \%$ in (1)-(5) exist in equilibrium with the dimer, the σ values of their compounds were approximately estimated using equations (1) and (2). However, the application of these equations to (1)-(5) may overestimate the σ values because the assumption neglects the equilibrium between the free molecules and the intramolecular hydrogen-bonded molecules in their compounds. Nevertheless, the estimated σ values in CCl_{4} solution showed very low values of 0.4% for (1), 1.7% for (2), 2.0% for (3), 0.1% for (4), and 0% for (5) and in CHCl_{3} solution, of 2.0% for (1), 5.4% for (2), 0% for (3), 2.1% for (4), and 3.6% for (5). These results indicate that, as a first approximation, the existence of dimer in these compounds can be neglected in the curve analysis for the solutions examined. However, the measured value for (3) in CCl_{4} solution was adopted as the σ value because only (3) gives a dimer $v_{\mathrm{C}=0}$ band with a peak at $1709 \mathrm{~cm}^{-1}$.

Intramolecular Hydrogen Bonds in (1).-When the hydrogen bond is formed between the XH and $\mathrm{Y}=\mathrm{Z}$ groups, the XH and $\mathrm{Y}=\mathrm{Z}$ stretching vibration bands, $\nu_{\mathbf{X H}}$ and $v_{\mathrm{Y}=\mathrm{Z}}$ bands, shift to lower wavenumbers and the intensity of the v_{XH} band in general remarkably increases. ${ }^{23}$ For (1) in CCl_{4} solution as shown in Figure 2, the intensities of the free v_{OH} band at $3529 \mathrm{~cm}^{-1}$ and the free $v_{\mathrm{C}=\mathrm{o}}$ band at $1756 \mathrm{~cm}^{-1}$ for the carboxy group and of the free v_{NH} band at $3394 \mathrm{~cm}^{-1}$ for a sulphonamido group remarkably decreased, and new bands appeared at 3237,1724 and 1711 , and $3249 \mathrm{~cm}^{-1}$, respectively. In addition, compared with the $v_{\mathrm{asSO}_{2}}$ band at $1353 \mathrm{~cm}^{-1}$ and the $v_{\mathrm{sSO}_{2}}$ band at ca . $1163 \mathrm{~cm}^{-1}$ observed for the sulphonamido group of $(\pm) 2$ -exo-propylbicyclo[2.2.1]hept-3-endo-(phenylsulphonyl)amine, the shifts to lower wavenumbers $\left(\Delta v_{\mathrm{asSO}_{2}}=32\right.$ and $\Delta v_{\mathrm{sSO}_{2}}=$ $c a .13 \mathrm{~cm}^{-1}$) of corresponding bands for (1) were observed in CCl_{4} solutions. From these findings, it is clear that (1) in CCl_{4} solution exists in the conformation with the twelve-membered ring due to the intramolecular hydrogen bonds of (I) between the carboxy and the sulphonamido groups such as observed with S-145. ${ }^{5}$

(I)

The spectral behaviour of (1) in CHCl_{3} solution resembled that in CCl_{4} solution. This indicates that in CHCl_{3} solution, (1) forms the intramolecular hydrogen bonds (I) as well as in CCl_{4} solution. The ρ values of (1) are estimated to be 85% in CCl_{4} and 54% in CHCl_{3} solutions. As shown in Figure 2, (1) in CCl_{4} solution gives two intramolecular hydrogen-bonded $v_{\mathrm{C}=\mathrm{o}}$ bands, suggesting that an equilibrium exists between two conformers of the twelve-membered ring. These findings are similar to those found ${ }^{5}$ for $\mathrm{S}-145$ and indicate that the conformation of (1) is identical to that of $\mathrm{S}-145$ in CCl_{4} and CHCl_{3} solutions. This suggests that the conformation is affected little by the steric hindrance of the bicyclic ring as presumed for familiar types of U-46619 in the Introduction. Furthermore, we have reported ${ }^{24}$ that three stereoisomers of $\mathrm{S}-145$, which possess TXA_{2} receptor antagonist properties, have a conformation similar to that of S-145 because they display similar spectral behaviours. This also suggests that the conformation of the ring formed by (I) is not appreciably influenced by the configurations of the α - and ω-side chains in this case.

Intramolecular Hydrogen Bonds in (2) and (6).-For (2) in the CCl_{4} solution as shown in Figure 3, the intensities of the free v_{OH} bands at $3532 \mathrm{~cm}^{-1}$ for the carboxy group and at
Table 1. FTIR spectral data of compounds (1)-(5) in CCl_{4} and CHCl_{3} solutions.

Compound	Assignment ${ }^{\text {a }}$		CCl_{4} (cell length $=5.0 \mathrm{~cm}$)						CHCl_{3} (cell length $=1.0 \mathrm{~cm}$)					
			$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & \Delta v_{1 / 2} / \\ & \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & A / 10^{-8} \mathrm{~cm}^{2} \\ & \mathrm{~s}^{-1} \mathrm{molecule}^{-1} \end{aligned}$	$N^{b}(\%)$	$\begin{aligned} & c / 10^{-5} \mathrm{~mol} \\ & \mathrm{dm}^{-3} \end{aligned}$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \varepsilon / \mathrm{dm}^{3} \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & \Delta v_{1 / 2} / \\ & \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & A / 10^{-8} \mathrm{~cm}^{2} \\ & \mathrm{~s}^{-1} \mathrm{molecule}^{-1} \end{aligned}$	$N^{b}(\%)$	$\begin{aligned} & c / 10^{-4} \mathrm{~mol} \\ & \mathrm{dm}^{-3} \end{aligned}$
(1)	$v_{\mathrm{OH}}(\alpha)$	F	3528.9	29.8	22.9	3.4		3.1907	3513.5	53.3	44.8	29.4		2.7123
		H	3237	90	217	232			c					
	$v_{\mathrm{C}=\mathrm{o}}(\alpha)$	F	1756.0	73.5	20.2	18.1	14.6		1748.1	183.1	33.1	83.1	45.8	
		H	1724.0	144.4	21.7	42.5			1731.4	87.6	37.4	40.0		
		H	1710.7	350.6	17.2	77.5			1706.5	144.9	24.9	46.9		
	$v_{\mathrm{NH}}(\omega)$	F	$3394.4{ }^{\text {d }}$	12.7	22.8	4.0			3388.4	43.5	34.3	19.3		
		H	3249	113	69	95			~ 3260	c				
(2)	$\mathrm{v}_{\mathrm{OH}}(\alpha)$	F	3532.1	36.3	25.8	14.0		3.0392	3514.3	57.2	48.9	38.1		2.8016
		H	3154	59	233	168			c					
	$v_{C=0}(\alpha)$	F	1756.8	110.4	20.3	27.5	22.0		1743.3	298.4	32.3	122.6	74.6	
		H	1732.7	217.8	22.9	74.3			1715.2	118.4	30.7	50.2		
		H	1721.7	155.8	25.4	50.7								
	$\nu_{\mathrm{OH}}(\omega)$	F	3627.2	24.1	22.8	7.3			3620.1	38.3	30.6	12.7		
		H	3403	35	178	72			3392.4	30.3	136.0	49.2		
	$\nu_{\mathrm{NH}}(\omega)$	F	3424.7	54.0	16.8	13.5			3411	61	31	23		
		F	3409.7	30.1	21.5	8.0								
		H	3362.5	18.5	36.5	9.4								
	$v_{\mathrm{C}=\mathrm{o}}(\omega)$	F	1673.6	275.1	13.8	46.4			1668.7	240.3	19.1	65.2		
		F							1655.7	231.8	22.0	67.8		
		H	1663	168	49	c			1636.1	125.0	29.6	44.4		
(3)	$\begin{aligned} & v_{\mathrm{OH}}(\alpha) \\ & v_{\mathrm{C}=\mathrm{o}}(\alpha) \end{aligned}$	F	3531.0	45.5	24.2	13.9		3.1818	3515.2	16.7	45.1	9.1		2.9655
		F	1758.5	112.9	18.8	20.3	22.5		1743.8	70.7	35.1	33.8	17.7	
		D	1709.3	20.1	12.9	3.2	$(2.4){ }^{\text {e }}$							
	$\begin{aligned} & v_{\mathrm{asCO}_{2}}-(\alpha) \\ & v_{\mathrm{NH}_{2}}+(\omega) \\ & \delta_{\mathrm{NH}_{2}}+(\omega) \end{aligned}$	H	1706.8	85.1	46.8	46.7			1690.0	89.0	51.7	~ 59		
		H	~ 2700	f					~ 2700	f				
		H	c						1636	58	~ 83	c		

Table 1 (continued)

Table 2. FTIR spectral data of compounds (6), (8), and (9) in CCl_{4} and CHCl_{3} solutions.

Compound	Assignment ${ }^{a}$		CCl_{4} (cell length $=5.0 \mathrm{~cm}$)						CHCl_{3} (cell length $=1.0 \mathrm{~cm}$)					
			$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \varepsilon / \mathrm{dm}^{3} \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & \Delta v_{1 / 2} / \\ & \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & A / 10^{-8} \mathrm{~cm}^{2} \\ & \mathrm{~s}^{-1} \text { molecule }^{-1} \end{aligned}$	$N^{b}(\%)$	$\begin{aligned} & c / 10^{-5} \mathrm{~mol} \\ & \mathrm{dm}^{-3} \end{aligned}$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\begin{aligned} & { }^{1} \Delta v_{1 / 2} / \\ & \mathrm{cm}^{-1} \end{aligned}$	$\begin{aligned} & A / 10^{-8} \mathrm{~cm}^{2} \\ & \mathrm{~s}^{-1} \text { molecule } \end{aligned}$	$N^{\text {b }}$ (\%)	$\begin{aligned} & c / 10^{-4} \mathrm{~mol} \\ & \mathrm{dm}^{-3} \end{aligned}$
(6)	$\nu_{\mathrm{C}=0}(\alpha)$	F	1741.2	393.6	16.1	83.7	71.6	2.9587	1730.8	375.5	23.8	114.8	92.3	2.6853
		H	1725.3	165.6	14.9	34.7			1718.8	85.3	17.4	23.6		
	$\mathrm{v}_{\mathrm{OH}}(\omega)$	F	3629.9	41.2	20.2	10.6			3618.6	49.3	29.6	16.7		
		H	3445	23	126	36			3424	20	127	30		
		F	3419.9	73.4	21.6	26.7			3413.4	80.7	27.3	26.5		
	$\mathrm{v}_{\mathrm{C}=0}(\omega)$	F	1674.1	567.4	18.6	~ 124			1669.1	331.5	18.2	88.2		
		F							1656.1	303.1				
(8)	$\mathrm{v}_{\mathrm{C}=0}(\alpha)$	F	1741.0	400.8	16.0	86.5	72.9	3.0037	1729.5	420.7	27.3	150.1	103.5	2.7297
		H	1724.2	188.5	18.6	42.8								
	$v_{\mathrm{NH}}(\omega)$	F	3407.2	26.9	21.1	8.0								
		$\mathrm{H}^{\text {c }}$	3378.4	94.6	34.1	46.2			3371.7	116.5	50.0	78.6		
		H	3346	20	102	24								
	$v_{\mathrm{C}=0}(\omega)$	F	1706.7	427.1	19.0	107.9			1692.0	447.3	30.0	170.9		
		F	1687.5	195.3	22.0	54.5			1666.9	104.2	32.2	40.9		
(9)	$\mathrm{v}_{\mathrm{C}=0}(\alpha)$	F	1741.3	420.4	16.2	85.7	76.4	3.0137	1730.1	416.7	25.4	133.3	102.5	3.0086
		H	1724.9	150.3	20.4	40.3								
	${ }^{\mathbf{N H}}$ (ω)	F	3394.5	142.3	27.9	52.1			3387.5 33568	139.2	30.2	56.4		
		H	3361.2	61.1	18.3	17.0			3356.8	84.0	22.1	29.0		
		H	3315.6	13.6	50.2	8.9								
	$v_{\mathrm{c}=0}(\omega)$	F	1711.0	679.8	23.9	211.3			1703.3	349.6	24.9	120.5		
		F							1691.1	532.0	19.7	146.6		

 stearate in CCl_{4} and CHCl_{3} solutions, respectively. ${ }^{5 \mathrm{c}}$ The peak was assigned to the free v_{NH} and intramolecular hydrogen-bonded v_{NH} bands of urea group as in (VI) (see text).

Figure 3. FTIR spectra of (2) at $3.0392 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ in CCl_{4} solution in a 5.0 cm cell and the results of peak separation of their spectra.
$3627 \mathrm{~cm}^{-1}$ for a hydroxy group remarkably decreased and new broad bands appeared at 3154 and $3403 \mathrm{~cm}^{-1}$, respectively. The basis of this assignment is as follows: the latter broad band is analogous to that of the intramolecular hydrogen-bonded hydroxy group in the ω-side chain as in (6) described below. The intensities of the free $v_{\mathrm{C}=\mathrm{o}}$ bands at $1757 \mathrm{~cm}^{-1}$ for the carboxy group and at $1674 \mathrm{~cm}^{-1}$ for the amido group in (2) also decreased and a new band appeared at 1733 and $1722 \mathrm{~cm}^{-1}$ and at $1663 \mathrm{~cm}^{-1}$, respectively. The latter free $v_{\mathrm{C}=\mathrm{o}}$ band agreed with that in (6). From these findings, it is obvious that (2) in CCl_{4} solution exists in a conformation with a fourteenmembered ring formed by intramolecular hydrogen bonds of (II) between the α - and the ω-side chains. In CCl_{4} solution,

(II)
(2) exhibits two intramolecular hydrogen-bonded $v_{\mathrm{C}=\mathrm{O}}$ bands for the carboxy group, suggesting that an equilibrium exists between two conformers in the fourteen-membered ring. The split free v_{NH} bands at 3424 and $3410 \mathrm{~cm}^{-1}$ for the amido group of (2) were presumed to be due to the conformational change in this ring. The weak v_{NH} band in (2) was further observed at $3363 \mathrm{~cm}^{-1}$, indicative of the existence of other intramolecular hydrogen bonding. As its amount was estimated to be very small, the hydrogen bonding was neglected.
For (6) in CCl_{4} solution, the intensities of the free $v_{\mathrm{C}=\mathrm{o}}$ band at $1741 \mathrm{~cm}^{-1}$ for the methyl ester and the free v_{OH} band at $3630 \mathrm{~cm}^{-1}$ for the hydroxy groups decreased and new bands were observed at 1725 and $3445 \mathrm{~cm}^{-1}$, respectively. The latter new peak was assigned to the intramolecular hydrogen-bonded $v_{\text {OH }}$ band, because its peak has a higher wavenumber than that of the free v_{NH} band of the amido group. In addition, the free $v_{\mathrm{C}=\mathrm{o}}$ band of the amido group was observed at $1674 \mathrm{~cm}^{-1}$. These results indicate that intramolecular hydrogen bond (III) involving a fifteen-membered ring in (6) is formed between the α - and ω-side chains. Since the spectral behaviours of (2) and (6)

in CHCl_{3} solution are similar to those in CCl_{4} solution, their compounds are anticipated to form intramolecular hydrogen bonds (II) and (III) in CHCl_{3} solution, respectively. The ρ values of (2) and (6) are estimated to be 78 and 28% in CCl_{4} and 25 and 8% in CHCl_{3} solutions, respectively. The value of (6) is smaller than that of (2) because there is only one hydrogen bond in (6).

Intramolecular Hydrogen Bonds in (3) and (7).-For (3) in CCl_{4} solution as shown in Figure 4, the intensities of the free v_{OH} band at $3531 \mathrm{~cm}^{-1}$ and the free $v_{\mathrm{C}=\mathrm{O}}$ band at $1759 \mathrm{~cm}^{-1}$ for the carboxy group remarkably decreased and new weak bands appeared at $c a .2700$ and $1707 \mathrm{~cm}^{-1}$. For (3) in CHCl_{3} solution, the intensities of these bands at 3515 and $1744 \mathrm{~cm}^{-1}$ also decreased and new weak bands appeared at ca. 2700,1690 , and $1636 \mathrm{~cm}^{-1}$. The v_{OH} and $v_{\mathrm{C}=\mathrm{o}}$ bands due to the carboxy group almost disappeared. In (3) with the carboxy and the amino groups in one molecule, intramolecular ionic hydrogen bonds as in the zwitterion form (IV) can be expected to occur. Therefore, in order to explain the changes in these spectra, we made assignments for the new weak bands of (3).

(IV)

As the intermolecular ionic hydrogen bonds would be formed in the mixture of (10) and (13) as in (IV), the concentration dependence of FTIR spectra of this mixture was measured in CCl_{4} solution. The spectra and the spectral parameters obtained are shown in Figure 5 and Table 3, respectively. In a highly concentrated CCl_{4} solution, the intensities of the free v_{OH} band at $3532 \mathrm{~cm}^{-1}$ and the free $v_{\mathrm{c}=\mathrm{o}}$ band at $1759 \mathrm{~cm}^{-1}$ for the carboxy group remarkably decreased and new weak bands were observed at $c a .2700,1699$, and $1621 \mathrm{~cm}^{-1}$ in this mixture. The FTIR spectral data of the mixture of (10) and (13), and (3) to (5) and the ${ }^{1} \mathrm{H}$ NMR spectral data of its mixture and (3) observed at a concentration above $1 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ are given in Table 4. The free v_{OH}, the free $v_{\mathrm{C}=\mathrm{o}}$, and the dimer $\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ bands for the carboxy group of these compounds almost disappeared in the $\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}$, and CDCl_{3} solutions examined, respectively.

For the mixture of (10) and (13) and for (3), three new bands were observed in the range between 1750 and $1500 \mathrm{~cm}^{-1}$ and the middle bands disappeared on substitution of the deuterium atom by evaporating the acetone $-\mathrm{D}_{2} \mathrm{O}$ solution. Furthermore, ${ }^{1} \mathrm{H}$ chemical shifts for $\mathrm{NH}_{2}{ }^{+}$groups of the mixture and (3) were
Table 3. FTIR spectral data of compounds (10)-(14) and $1: 1$ mixtures of (10) and (11), (10) and (12), (10) and (7), (10) and (13), and (10) and (14) in CCl_{4} and CHCl_{3} solutions.

Table 3 (continued)

[^1]

Figure 4. FTIR spectra of (3) at $3.1818 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ in CCl_{4} solution in a 5.0 cm cell and the result of peak separation of a spectrum.

Figure 5. FTIR spectra of $1: 1$ mixtures of $(\mathbf{1 0})$ and (13) in CCl_{4} solution and the results of peak separation of their spectra. Spectra were obtained using a $5.0-\mathrm{cm}$ cell; (10) 3.5842×10^{-5} and (13) $3.9517 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ (left) and a 0.5 cm cell; (10) 4.5446×10^{-3} and (13) $4.9396 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ (right).

Table 4. FTIR spectral data of $1: 1$ mixture of (10) and (13) and compounds (3)-(5) and ${ }^{1} \mathrm{H}$ NMR spectral data of $1: 1$ mixture of (10) and (13) and compound (3).

Compound	$\mathrm{vasco}_{2}-/ \mathrm{cm}^{-1}$		$v_{\mathrm{sCO}_{2}}-/ \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}_{\left(\mathrm{NH}_{2}{ }^{+}{ }^{\text {b }} \text { / }\right.} / \mathrm{ppm}}$	$c / 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$	Solvent ${ }^{\text {c }}$
$(10)+(13)$	1711.2	1622.8	1549.2		$\sim 4^{\text {d }}$	CCl_{4}
$(10)+(13)$	1687.4	1622.8	1549.2		$\sim 5^{\text {d }}$	CHCl_{3}
$(10)+(13)$	1687.7	1622.9	1548.6	6.02	$1.2{ }^{\text {d }}$	CDCl_{3}
(3)	1685.3	1623.7	1551.7	5.68	1.3	CDCl_{3}
(3)	1685.9	1621.6	1554.9		~ 4	CHCl_{3}
(4) ${ }^{e}$	~ 1655		1541.0		~ 2	CHCl_{3}
(5) ${ }^{f}$	1655.0		1540.8		~ 2	CHCl_{3}

${ }^{a}$ On substitution of the deuterium atom, the band disappears. ${ }^{b}$ Chemical shift of the $\mathrm{NH}_{2}+$ protons from TMS. ${ }^{c}$ Cell length is 0.1 cm for $\mathrm{CDCl}{ }_{3}$ and 0.025 cm for CHCl_{3} and $\mathrm{CCl}_{4} \cdot{ }^{d}$ The value is the concentration of (10) and (13). ${ }^{e}$ The $\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ bands of the urea group were observed at 1706 and $1687 \mathrm{~cm}^{-1}$. ${ }^{f}$ The $v_{\mathrm{C}=0}$ band of the urea group was observed at $1699 \mathrm{~cm}^{-1}$.
the peaks in the region of $1623 \mathrm{~cm}^{-1}$ were assigned to the $\delta_{\mathrm{NH}_{2}}{ }^{+}$band. However, the peaks in the region of $1700 \mathrm{~cm}^{-1}$ are thought to be at wavenumbers generally considered too high for the $v_{\mathrm{asCO}_{2}}{ }^{-}$band. It has been reported ${ }^{25}$ that the $\mathrm{VasCO}_{2}{ }^{-}$ bands for $\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$and $\mathrm{CCl}_{3} \mathrm{CO}_{2}{ }^{-}$ions, which form a very strong hydrogen bond in CHCl_{3} solution, appear at wavenumbers above 1747 and $1732 \mathrm{~cm}^{-1}$, respectively, and that the formation of the $\mathrm{CO}_{2}{ }^{-} \cdots \mathrm{HB}^{+}$bond causes the shift of the $v_{\mathrm{asCO}_{2}}{ }^{-}$band to a higher wavenumber. Based on these findings, the three peaks observed in our mixture and (3) were assigned to the bands as shown in Table 4. The broad peaks in the region of $c a .2700 \mathrm{~cm}^{-1}$ in these compounds were also assigned to the hydrogen-bonded $v_{\mathrm{NH}_{2}}{ }^{+}$band. Clearly, (3) and the mixture of (10) and (13) in the highly concentrated CCl_{4} and CHCl_{3} solutions form intermolecular hydrogen bonds of the zwitterion form (IV), in spite of the fact that they are scarcely formed in dilute solutions.

Since the new bands observed for (3) in dilute CCl_{4} and
CHCl_{3} solutions are similar to those for the mixture and (3) in the highly concentrated solutions, their bands were assigned as shown in Table 3. This indicates that the intramolecular ionic hydrogen bonds (IV) involving the twelve-membered ring in (3) are formed between the α - and ω-side chains in these solutions. The ρ values of (3) are estimated to be 75% in CCl_{4} and 82% in CHCl_{3} solutions. The latter is larger than the former and different from those in (1), (2), (4), and (5). Thus, intermolecular ionic hydrogen bonding might occur in the CHCl_{3} solution of (3) as mentioned above. For the mixture of (10) and (7) in CCl_{4} solution, the methyl ester group of (7) revealed only the free $v_{\mathrm{C}=\mathrm{o}}$ band at $1741 \mathrm{~cm}^{-1}$ and the spectral parameters of the mixture agreed well with the sum of those of the two compounds as shown in Table 3. This suggests that this mixture does not form the intermolecular hydrogen bond between (10) and (7) in the CCl_{4} solution measured and (7) does not form the intramolecular one between the α - and ω-side chains.

Figure 6. FTIR spectra of (4) at $3.3395 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ in CCl_{4} solution in a 5.0 cm cell and the results of peak separation of their spectra.

Intramolecular Hydrogen Bonds in (4) and (8).-For (4) in CCl_{4} solution as shown in Figure 6, the intensities of the free v_{OH} band at $3531 \mathrm{~cm}^{-1}$ and the free $v_{\mathrm{C}=\mathrm{O}}$ band at $1755 \mathrm{~cm}^{-1}$ for the carboxy group remarkably decreased and new bands appeared at 3073,2634 , and $1660 \mathrm{~cm}^{-1}$. Furthermore, the free v_{NH}, the intramolecular hydrogen-bonded v_{NH}, and two free $v_{\mathrm{C}=\mathrm{o}}$ bands of the urea group were observed at 3368,3233 , and 1709 and $1684 \mathrm{~cm}^{-1}$, respectively. These free $v_{\mathrm{C}=\mathrm{o}}$ bands correspond to those at 1707 and $1688 \mathrm{~cm}^{-1}$ for the urea group of (8). This indicates that a $\mathrm{C}=\mathrm{O}$ bond of the urea in (4) does not take part in the intramolecular hydrogen bonding. In CHCl_{3} solution at $c a .2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}{ }^{-3}$, the free $v_{\mathrm{C}=\mathrm{o}}$ band of the carboxy group in (4) disappeared and new bands were observed at $c a .1655$ and $1541 \mathrm{~cm}^{-1}$. Because this spectral behaviour resembles that of the mixture of (10) and (13), the former and the latter peaks were assigned to the $\mathrm{V}_{\mathrm{asCO}_{2}-}{ }^{-}$and $v_{\mathrm{sCO}}^{2}-$ - bands, respectively. In dilute CHCl_{3} and CCl_{4} solutions, (4) gave peaks at 1653 and $1660 \mathrm{~cm}^{-1}$, respectively, which correspond to the former band. Therefore, these peaks were assigned to the $\mathrm{VasCO}_{2}-$ band and the new bands at 3073 and $2634 \mathrm{~cm}^{-1}$, to the $v_{\mathrm{NH}_{2}}+$ bands. From these results, we inferred that the intramolecular hydrogen bonds of the zwitterion form ($\mathbf{V a}$) or $(\mathbf{V b})$ involving the thirteen-membered ring in (4) are formed between the α - and ω-side chains.

(Va)

(Vb)

In general, 1,3 -disubstituted ureas exist in Z / Z conformation as in ($\mathbf{V a}$) and the free v_{NH} bands of their compounds appear at wavenumbers above $3410 \mathrm{~cm}^{-1}$ in CCl_{4} solution, ${ }^{26}$ but the band is shifted to a lower wavenumber by a conformational change from Z / Z to E / Z as in $(\mathbf{V b}) .{ }^{26 a, 27}$ Since (4) gives the free v_{NH} band at $3368 \mathrm{~cm}^{-1}$, it seems reasonable to assume that its intramolecular hydrogen-bonded structure is $(\mathbf{V b})$ rather than (Va), but no direct evidence is available on these structures. The spectral behaviour of (4) in CHCl_{3} solution is similar to that in CCl_{4} solution. This suggests that in CHCl_{3} solution, the intramolecular hydrogen-bonded structure of (4) is the same as that described above. The ρ value of (4) is estimated to be 89% in CCl_{4} and 55% in CHCl_{3} solutions.

For (8) in CCl_{4} solution, the intensity of the free $v_{\mathrm{C}=\mathrm{o}}$ band at $1741 \mathrm{~cm}^{-1}$ for the methyl ester group decreased, a new band appeared at $1724 \mathrm{~cm}^{-1}$, and the intramolecular hydrogen
bonded v_{NH} band of the urea group was observed at 3346 cm^{-1}. These indicate that the intramolecular hydrogen bond in (8) is formed between a $\mathrm{C}=\mathrm{O}$ bond of the methyl ester and either of the NH bonds of the urea group. In CHCl_{3} solution, (8) does not form the intramolecular hydrogen bonding because only the free $v_{\mathrm{C}=\mathrm{o}}$ band for the methyl ester group was observed at 1730 cm^{-1}. The ρ value of (8) is also estimated to be 27% in CCl_{4} and 0% in CHCl_{3} solutions.

In addition, the v_{NH} bands of the urea group in (8) were observed at 3407 and $3378 \mathrm{~cm}^{-1}$ in CCl_{4} and $3372 \mathrm{~cm}^{-1}$ in CHCl_{3} solution; the band at $3407 \mathrm{~cm}^{-1}$ is small. Compared with the free v_{NH} bands of 1,3-disubstituted ureas, ${ }^{26}$ these bands were shifted to lower wavenumbers. This suggests that the ω-side chain of (8) forms the intramolecular hydrogen bond as in (VI), when (8) does not form the intramolecular hydrogen bond between the α - and ω-side chains.

(VI)

Intramolecular Hydrogen Bonds in (5) and (9).-For (5) in CCl_{4} solution as shown in Figure 7, the free v_{OH} and $v_{\mathrm{C}=\mathrm{o}}$ bands of the carboxy group almost disappeared, new bands appeared at 2900,2564 , and $1660 \mathrm{~cm}^{-1}$, and the free v_{NH}, the intramolecular hydrogen-bonded v_{NH}, and the free $\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ bands of the urea group were observed at 3379,3210 , and $1707 \mathrm{~cm}^{-1}$, respectively. The last band corresponds to the free $v_{\mathrm{C}=\mathrm{o}}$ band at $1711 \mathrm{~cm}^{-1}$ for the urea group of (9) in CCl_{4} solution. In CHCl_{3} solution at $c a .2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, the free $v_{\mathrm{C}=\mathrm{o}}$ band of the carboxy group in (5) disappeared and new peaks were observed at 1655 and $1541 \mathrm{~cm}^{-1}$, indicative of the $v_{\mathrm{asCO}_{2}-}$ and the $v_{\mathrm{sCO}_{2}}{ }^{-}$bands, respectively. Based on these findings and the results described above, the peak at $1660 \mathrm{~cm}^{-1}$ was assigned to the $\mathrm{V}_{\mathrm{asCO}_{2}-}$ band and the peaks at 2900 and $2564 \mathrm{~cm}^{-1}$ to the $v_{\mathrm{NH}}{ }^{+}$bands. These results suggest that the intramolecular hydrogen bonds of the zwitterion form (VIIa) or

(VIIa)

Figure 7. FTIR spectra of (5) at $3.1604 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ in CCl_{4} solution in a 5.0 cm cell and the results of peak separation of their spectra.

Table 5. Energy difference (ΔE) between the conformers and torsion angle $\mathrm{H}-\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}-\mathrm{H}$ (τ) for model compound (15) by MINDO/3 and AM1 calculations.

Form ${ }^{\text {a }}$	MINDO/3		AM1	
	$\Delta E / \mathrm{kJ} \mathrm{mol}^{-1}$	$\tau /{ }^{\circ}$	$\Delta E / \mathrm{kJ} \mathrm{mol}^{-1}$	$\tau /{ }^{\circ}$
T ${ }_{1}$	0.0	179	0.0	-173
T	0.5	161	0.02	175
G_{1}	4.3	98	3.3	93
C_{1}	4.8	58	5.0	43
C_{2}	4.9	-57	6.4	-28
G_{2}	5.4	-87	2.5	-95

${ }^{a}$ T, G, and C show trans, gauche, and cis forms, respectively.
(VIIa) involving the thirteen-membered ring in (5) are formed between the α - and ω-side chains. Since the shift to a lower wavenumber of the free v_{NH} band for the urea group was observed for (5), it seems reasonable to assume that the intramolecular hydrogen-bonded structure is (VIIb) rather than (VIIa), as described above, but no direct evidence is available on these structures. The spectral behaviour of (5) in CHCl_{3} solution is analogous to that in CCl_{4} solution. This suggests that the intramolecular hydrogen bonds of (5) in CHCl_{3} solution are identical to those in CCl_{4} solution. The ρ value is estimated to be 96% in CCl_{4} and 43% in CHCl_{3} solutions.

For (9) in the CCl_{4} solution, the free $\mathrm{v}_{\mathrm{C}=\mathrm{o}}$ band at 1741 cm^{-1} for the methyl ester group decreased and the intramolecular hydrogen-bonded $v_{\mathrm{C}=\mathrm{o}}$ and v_{NH} bands were observed at $1725 \mathrm{~cm}^{-1}$ for the ester group and $3316 \mathrm{~cm}^{-1}$ for the urea group, respectively, but no change was observed for the CHCl_{3} solution. This indicates that the intramolecular hydrogen bond in (9) is formed between the $\mathrm{C}=\mathrm{O}$ bond of the methyl ester and either of the NH bonds of the urea group in CCl_{4} solution and does not form in CHCl_{3} solution. The ρ value of (9) is estimated to be 27% in CCl_{4} and 0% in CHCl_{3} solutions. Furthermore, the v_{NH} bands of the urea group in (9) were observed at 3395 and $3361 \mathrm{~cm}^{-1}$ in CCl_{4} and 3388 and $3357 \mathrm{~cm}^{-1}$ in CHCl_{3} solutions. Compared with the v_{NH} band of 1,3 -disubstituted ureas, ${ }^{26}$ these bands were shifted to lower wavenumbers. This suggests that an NH bond adjacent to the phenyl group of the

(VIII)
ω-side chain in (9) is intramolecularly hydrogen-bonded to a lone pair electrons of N atom as in (VIII) as well as in 3-methyl-1,5-diphenylformazan ${ }^{28}$ when (9) does not form the intramolecular hydrogen bond between the α - and ω-side chains.

Conformation in U-46619.-Previously, we have reported ${ }^{5}$ that U-46619 with α - and ω-side chains and configuration that are the same as those of TXA 2 forms intramolecular hydrogen bonds involving the fifteen-membered ring in CCl_{4} and CHCl_{3} solutions as shown in Figure 8. The six conformers in U-46619 are possible by rotation along the $\mathrm{C}(12)-\mathrm{C}(13)$ bond, but the geometry of this part is not clear. Accordingly, the geometries of these conformers for model compound (15) were optimized by MINDO/3 ${ }^{20}$ and AM1 ${ }^{21}$ methods.

As shown in Table 5, conformer T_{1} with $\mathrm{C}_{\mathrm{b}}-\mathrm{H}$ bond trans to $\mathrm{C}_{\mathrm{a}}-\mathrm{H}$ bond is the most stable among them in both the calculations. From this result, we assumed that H-12 and H-13 atoms of U-46619 are trans to each other in the conformation with the fifteen-membered ring formed by the hydrogen bonds. MINDO/ 3 and AM1 calculations were done for several model systems of 1,3 -disubstituted ureas to predict the stable geometries. However, these calculations cannot yield accurate geometries of the ω-side chains in (4), (5), (8), and (9) because the theoretical predictions produce different results based on the two methods.

Geometrical Resemblance of (1)-(5).-The intramolecular hydrogen-bonded structures found in (1)-(5) in dilute CCl_{4} and CHCl_{3} solutions are shown in Figure 8, together with the ρ values. Freedom in the conformation of a large ring formed by these hydrogen bonds is very restricted owing to a bicyclic ring, a double bond, and the hydrogen bonds in these compounds. If the conformations illustrated in Figure 8 are adopted for (1)-(5), the geometrical arrangements of the functional groups in their compounds strongly resemble each other, although an equilibrium in (1) and (2) exists between the two ring conformers. The same statement is true for U-46619. The illustrated conformation of (1) is similar to that reported for S-145. ${ }^{5}$ Namely, we found a geometrical resemblance between the TXA ${ }_{2}$ receptor antagonists S-145 and (1)-(5) and the agonist U-46619 in nonpolar solvents.

In conclusion, the FTIR method used should be helpful for elucidating the conformation of analogous compounds such as TXA $_{2}$ receptor agonists and antagonists containing non-vicinal carboxy and other functional groups in non-polar solvents. The information obtained should be useful for designing drugs and for confirming the conformational analyses using theoretical calculations.

U-46619

$\% \begin{cases}\mathrm{CHCl}_{3} & 46\end{cases}$

(2)
78
25

(4)
89
55

(5)
96

Figure 8. Conformations and the formation ratios (ρ) of the intramolecular hydrogen-bonded molecules on U-46619 and (1)-(5) in CCl_{4} and CHCl_{3} solutions.

Acknowledgements

We thank Dr. M. Narisada for his helpful discussions and Dr. S. Hagishita and Dr. K. Seno for providing the samples. The technical co-operation of Mrs. (K. Sugita) Megumi is gratefully acknowledged.

References

1 (a) S. S. Bhagwat, P. R. Hamann, and W. C. Still, J. Am. Chem. Soc., 1985, 107, 6372; (b) S. S. Bhagwat, P. R. Hamann, W. C. Still, S. Bunting, and F. A. Fitzpatrick, Nature (London), 1985, 315, 511.
2 M. Hamberg, J. Svensson, and B. Samuelsson, Proc. Natl. Acad. Sci. USA, 1975, 72, 2994.
3 (a) M. L. Ogletree, Fed. Proc. (Fed. Am. Soc. Ehp. Biol.), 1987, 46, 133; (b) A. M. Lefer and H. Darius, ibid., 1987, 46, 144; (c) P. V. Halushka, D. E. Mais, and D. L. Saussy, Jr., ibid., 1987, 46, 149.

4 (a) A. J. Wilkinson, C. M. Warwick, and R. H. Davies, Int. J. Quant. Chem. Quantum Biol. Symp., 1988, 15, 67; (b) R. H. Davies, B. Sheard, and P. J. Taylor, J. Pharm. Sci., 1979, 68, 396.
5 M. Takasuka, M. Yamakawa, and F. Watanabe, J. Chem. Soc., Perkin Trans. 2, 1989, 1173.
6 (a) G. DiMinno, V. Bertele, L. Bionchi, B. Barbieri, C. Cerletti, E. Dejana, G. D. Gaetano, and M. J. Silver, Thromb. Haemostasis, 1981, 45, 103; (b) G. L. Bundy, Tetrahedron Lett., 1975, 1957.
7 M. Narisada, M. Ohtani, F. Watanabe, K. Uchida, H. Arita, M. Doteuchi, K. Hanasaki, H. Kakushi, K. Otani, and S. Hara, J. Med. Chem., 1988, 31, 1847.
8 K. Stegmeier, J. Pill, B. M. Beckmann, F. H. Schmidt, E. C. Witte, H. P. Wolff, and H. Patscheka, Thrombosis Res., 1984, 35, 379.

9 N. K. Rogers and M. J. E. Sternberg, J. Mol. Biol., 1984, 174, 527.
10 K. Ezumi, M. Yamakawa, and M. Narisada, J. Med. Chem., 1990, 33, 1117.

11 (a) E. J. Corey, K. Narasaki, and M. Shibasaki, J. Am. Chem. Soc., 1976, 98, 6417; (b) J. L. Adams and B. W. Metcalf, Tetrahedron Lett., 1984, 25, 919.
12 (a) S. Ohuchida, N. Hamanaka, and M. Hayashi, Tetrahedron Lett., 1981, 22, 1349; (b) ibid., p. 5301.
13 (a) M. F. Ansell, M. P. L. Caton, M. N. Palfreyman, and K. A. J. Stuttle, Tetrahedron Lett., 1979, 20, 4497; (b) D. Ahnaroy, J. B. Smith, E. F. Smith, A. M. Lefer, R. L. Mogolda, and K. C. Nicolaou, Adv. PG Thromb. Res., 1980, 6, 489.
14 K. Seno and S. Hagishita, Chem. Pharm. Bull., 1989, 37, 1524.
15 H. Suga, N. Hamanaka, K. Kondo, H. Miyake, S. Ohuchida, Y. Arai, and A. Kawasaki, Adv. Prostal. Thromb. Leukotri. Res., 1987, 17, 799.
16 D. J. Fitzgerald, J. Doran, E. Jackson, and G. A. Fitzgerald, J. Clin. Invest., 1986, 77, 496.
17 E. J. Kattelman, D. L. Venton, and F. M. C. De Farias, Thromb. Res., 1986, 41, 471.
18 R. A. Armstrong, R. L. Jones, V. Peesapati, S. G. Will, and N. H. Wilson, Br. J. Pharmacol., 1985, 84, 595.
19 H. W. Thompson and D. A. Jameson, Spectrochim. Acta, 1958, 13, 236.

20 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc,, 1975, 97, 1285.
21 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
22 M. Tsuboi, Bull. Chem. Soc. Jpn., 1952, 25, 60.
23 (a) H. Tsubomura, J. Chem. Phys., 1956, 24, 927; (b) A. R. H. Cole, L. H. Litte, and A. Michell, Spectrochim. Acta, 1965, 21, 1169; (c) M. Takasuka, Y. Matsui, and T. Kubota, Spectrosc. Lett., 1976, 9, 821; (d) M. R. Basila, E. L. Saier, and L. R. Cousins, Spectrochim. Acta, 1965, 87, 1665.
24 M. Ohtani and M. Narisada, J. Med. Chem., 1990, 33, 1027.
25 (a) B. Brycki and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1984, 233; (b) Z. D. Szafran, A. Hrynio, and M. Szafran, Spectrochim. Acta Part A, 1987, 43, 1553.
26 (a) Y. Mido and T. Okuno, J. Mol. Struct., 1982, 82, 29; (b) A. T. Antonova, J. Mol. Struct., 1989, 197, 97; (c) B. Galabov, V. Kalcheva, and B. Hadjieva, J. Mol. Struct., 1987, 158, 259.
27 C. N. Rao, K. G. Rao, A. Goel, and D. Balasubramanian, J. Chem. Soc. A, 1971, 3077.
28 C. W. Cunningham, G. R. Burns, and V. McKee, J. Chem. Soc., Perkin Trans. 2, 1989, 1429.

Paper 0/00311E
Received 19th January 1990 Accepted 18th April 1990

[^0]: \dagger Part 1 is ref. 5.
 $\ddagger[\in]-[5 Z)-7-\{(1 R, 2 R, 3 S, 5 S)$-2-Benzenesulphonylamino-6,6-dimethylbicyclo[3.1.1] hept-3-yl\}hept-5-enoic acid.

[^1]:
 and broad. ${ }^{i}$ The parameter could not be obtained because the band was overlapped by solvent absorptions.

