FTIR Spectral Study of Intramolecular Hydrogen Bonding in Thromboxane A₂ Receptor Antagonist S-145 and Related Compounds. Part 2.[†]

Mamoru Takasuka,* Masumi Yamakawa, and Mitsuaki Ohtani Shionogi Research Laboratories, Fukushima-ku, Osaka 553, Japan

The FTIR spectra of thromboxane A₂ receptor antagonists, a S-145 analogue (1),‡ ONO-3708 (2), a 13-APA analogue (3), SQ-29548 (4), and EP-045 (5), and related compounds have been measured in dilute CCl₄ and CHCl₃ solutions. The spectra were subjected to curve analysis in order to separate overlapping absorption bands. For (1)–(5), intramolecular hydrogen bonds involving twelve-, fourteen-, twelve-, thirteen-, and thirteen-membered rings are found between a carboxy group of the α -side chain and a functional group of the ω -side chain, respectively. In (3)–(5), these hydrogen bonds are also found to be of a zwitterion form. The formation ratio (ρ) of the intramolecular hydrogen bond in CCl₄ solution show high values of 85 for (1), 78 for (2), 75 for (3), 89 for (4), and 96% for (5). On the basis of these findings on the intramolecular hydrogen bonds, the conformations of (1)–(5) have been identified and are found to be similar.

Thromboxane A_2 (TXA₂)¹ is a very potent inducer of blood platelet aggregation and of contraction of arterial smooth muscle.² TXA₂ receptor antagonists are promising as new medicines or preventives for cardio- and cerebro-vascular diseases.³ To carry out drug design and explain the onset mechanism of physiological activity, the active conformation of these antagonists in the TXA₂ receptor must be known. The conformer preference for the TXA₂ antagonist having α - and ω side chains is generally governed by the environment of the active site of the TXA₂ receptor. However, this environment is not known, despite the fact that this receptor is found on circulating platelets and vasculature.

Recently, a non-polar hydrocarbon phase was reported to be suitable as the environment for the active site of the TXA₂ receptor; ⁴ the relative permittivity of non-polar hydrocarbons is *ca.* 2. In a previous paper,⁵ we reported the conformations of the TXA₂ receptor agonist U-46619⁶ and antagonists S-145⁷ and BM-13177⁸ in dilute CCl₄ and CHCl₃ solutions, assuming the existence of a hole in a protein as the binding site in the TXA₂ receptor because the continuous permittivity value of the protein is 3.5,⁹ which is intermediate between the values of CCl₄ and CHCl₃ solvents. For these compounds, an analogous result has been obtained by conformational analyses using molecular mechanics and molecular orbital calculations.¹⁰

The typical TXA₂ receptor agonists and antagonists are shown in Figure 1, together with the related compounds. The conformations of the α - and ω -side chains in TXA₂, the TXA₂ receptor agonists U-44069,⁶ 9,11-Azo-PGH₂,¹¹ and STA₂, ¹² and the antagonist PTA₂¹³ are presumed to be almost the same as those found for U-46619 in CCl₄ and CHCl₃ solutions⁵ because the two side chains and their configurations in all these compounds are the same as those of U-46619. However, no information has so far been available on the exact conformation of the side chains for the TXA₂ antagonists (1),¹⁴ ONO-3708 (2),¹⁵ 13-APA,¹⁶ the 13-APA analogue (3), SQ-29548 (4),¹⁷ and EP-045 (5)¹⁸ in those solutions. Of them, (1) with its potent inhibitory activity against platelet aggregation and with no partial agonistic activity was prepared in our laboratory.14 Because the side chains and their configurations in (1) are the same as those of S-145, we became interested in comparing the conformations in both compounds in CCl₄ and CHCl₃ solutions from the standpoint of drug design. In order to determine the conformations of (1)-(5) in those solutions, we carried out FTIR spectra measurements for (1)-(6), (8), (9),

model compounds (10)–(14) having one functional group, and 1:1 mixtures of (10) and (7) or (11)–(14) in dilute CCl_4 and $CHCl_3$ solutions and for (3)–(5) and a 1:1 mixture of (10) and (13) in a highly concentrated solution. Full optimization curve analysis was applied to all spectra. In this paper, we examine the conformations stabilized by the intramolecular hydrogen bonds observed in (1)–(5) and discuss the conformational resemblance between the compounds. To help determine the conformation about a C(12)–C(13) bond in U-46619, the geometry of model compound (15) was optimized by MINDO/3 and AM1 methods.

Experimental

Compounds (1)-(9) were either synthesized by us or supplied by Seno and Hagishita. Compounds (10)-(14) were commercially available. FTIR spectra were recorded on a Nicolet 20 SXB FTIR spectrometer at 27 °C. Purification of CCl₄, CHCl₃, and CDCl₃, operations for their solutions, and curve-fitting calculations for peak separation were as previously described.⁵ Spectral parameters were obtained by curve-fitting calculation. Because the overtone and combination bands in the region of 3 500-3 200 cm⁻¹ are very weak,¹⁹ they were ignored in this calculation. In the Tables, v, ε , $\Delta v_{1/2}$, and A are the band frequency, the molar absorption coefficient, the band width at half-intensity, and the integrated intensity, respectively. The v_{OH} , v_{NH} , v_{NH_2} , $v_{C=O}$, v_{asCO_2} , and v_{sCO_2} bands show OH, NH, NH₂⁺, C=O, antisymmetric CO₂⁻, and symmetric CO₂⁻ stretching vibration bands, respectively, and a δ_{NH_2} band shows NH2⁺ in-plane bending band. ¹H NMR spectra were recorded with a Varian LX-200 FT spectrometer at 23 °C. The MINDO/3²⁰ and AM1²¹ calculations were carried out on a VAX 6320 computer using the QCPE program No. 506 (AMPAC).

[†] Part 1 is ref. 5.

 $[\]downarrow [\in]-[5Z)-7-\{(1R,2R,3S,5S)-2-Benzenesulphonylamino-6,6-dimethyl-bicyclo[3.1.1]hept-3-yl\}hept-5-enoic acid.$

Figure 1. Typical TXA₂ receptor agonists and antagonists and related compounds.

Results and Discussion

The spectral parameters obtained for dilute CCl₄ and CHCl₃ solutions of (1)-(5) and the assignments of absorption bands are shown in Table 1, together with the estimated ratio (N) of the non-intramolecular hydrogen-bonded molecules. In oder to confirm these assignments for (2), (4), and (5), the FTIR spectra of their methyl esters (6), (8), and (9) were measured for these solutions and the spectral parameters and the assignments are also shown in Table 2, together with the N values. When the intramolecular hydrogen bonding is to be considered, the amount of intermolecular hydrogen-bonded molecules between the functional groups of the α - and/or ω -side chains in (1)-(9) needs to be known, although there is little possibility of intermolecular hydrogen bonds being due to the formation of intramolecular hydrogen bonds. Thus, we carried out the next examination, but compounds having a methyl ester group were excluded because of weak hydrogen bonding interaction ability.22

FTIR Spectra of Model Compounds (10)-(14) and 1:1 Mix-

tures of their Compounds.—The spectral parameters obtained for the model compounds and the mixtures are shown in Table 3; the parameters of the mixture corresponding to (1) are not tabulated, because it has been reported ⁵ that the mixture does not form the intermolecular hydrogen bond between (10) and ± 2 -exo-propylbicyclo[2.2.1]hept-3-endo-(phenylsulphonyl)amine. The mixtures of (10) and (11) or (12), (10) and (13), and (10) and (14) correspond to the functional groups in (2), (3), and (4) or (5), respectively. The measurements were conducted in CCl₄ and CHCl₃ solutions at almost the same concentration as (1)–(5). The FTIR spectra of the mixtures of (10) and (8) or (9) were also measured in the same manner, although their parameters were omitted from Table 3.

In comparison with the corresponding spectral parameters in the model compounds, (8) and (9), no changes were found for the mixtures except for the mixture of (10) and (13) in $CHCl_3$ solution; the parameters for the mixtures agreed well with the sum of those of the corresponding two compounds. These results indicate that the mixtures, except for the mixture of (10) and (13) in $CHCl_3$ solution, do not form the intermolecular

Figure 2. FTIR spectra of (1) at 3.1907 \times 10⁻⁵ mol dm⁻³ in CCl₄ solution in a 5.0 cm cell and the results of peak separation of their spectra.

hydrogen bond between two kinds of compounds in this case. This also indicates that the changes of FTIR spectra shown in Tables 1 and 2, except for (3) in CHCl₃ solution, are attributable to the formation of intramolecular hydrogen bonding.

For the mixture of (10) and (13) in CHCl₃ solution, 22% of the $v_{C=0}$ bands, which are due to a carboxy group in (10), disappeared, and the v_{asCO_2} band was observed at 1 688 cm⁻¹, indicative of intermolecular hydrogen bonding of the zwitterion form as mentioned below. For (3) in CHCl₃ solution, the formation ratio of the intramolecular hydrogen bonding of the zwitterion form showed the high value of 82%. This indicates that the greater part of the changes of FTIR spectra in (3) in CHCl₃ solution are attributable to the formation of intramolecular hydrogen bonding, since there is little possibility of intermolecular hydrogen bonding due to the formation of intramolecular hydrogen bonding.

Because (10) forms a dimer of 14% in CCl₄ and 9% in CHCl₃ solutions at the concentrations measured, dimerization may occur in their solutions of (1)–(5). In order to estimate the reliable ρ (= 100 - N - σ) value, the amount of dimer of these compounds needed to be known. Regression analysis was done between the concentration ($c_f = cN/100$) of molecules having a free carboxy group and the ratio (σ_0°) of dimer using the spectral parameters of (10) reported by us,⁵ where c is the total concentration. The analysis gave good relationships which can be expressed as equation (1) for CCl₄ and (2) for CHCl₃ solutions, where n is the number of data points and r is the correlation coefficient.

$$\log c_{\rm f} = 0.245\sigma^{1/2} - 5.492 \,(n = 6, r = 0.998) \quad (1)$$

$$\log c_{\rm f} = 0.250\sigma^{1/2} - 4.258 \,(n = 7, r = 0.996)$$
(2)

Assuming that the free molecules of N_{0}^{\prime} in (1)–(5) exist in equilibrium with the dimer, the σ values of their compounds were approximately estimated using equations (1) and (2). However, the application of these equations to (1)-(5) may overestimate the σ values because the assumption neglects the equilibrium between the free molecules and the intramolecular hydrogen-bonded molecules in their compounds. Nevertheless, the estimated σ values in CCl₄ solution showed very low values of 0.4% for (1), 1.7% for (2), 2.0% for (3), 0.1% for (4), and 0% for (5) and in CHCl₃ solution, of 2.0% for (1), 5.4% for (2), 0% for (3), 2.1% for (4), and 3.6% for (5). These results indicate that, as a first approximation, the existence of dimer in these compounds can be neglected in the curve analysis for the solutions examined. However, the measured value for (3) in CCl₄ solution was adopted as the σ value because only (3) gives a dimer v_{C=0} band with a peak at 1 709 cm^{-1} .

Intramolecular Hydrogen Bonds in (1).--When the hydrogen bond is formed between the XH and Y=Z groups, the XH and Y=Z stretching vibration bands, v_{XH} and $v_{Y=Z}$ bands, shift to lower wavenumbers and the intensity of the v_{XH} band in general remarkably increases.²³ For (1) in CCl₄ solution as shown in Figure 2, the intensities of the free v_{OH} band at 3 529 cm⁻¹ and the free $v_{C=0}$ band at 1 756 cm⁻¹ for the carboxy group and of the free v_{NH} band at 3 394 cm⁻¹ for a sulphonamido group remarkably decreased, and new bands appeared at 3 237, 1 724 and 1 711, and 3 249 cm⁻¹, respectively. In addition, compared with the v_{asSO_2} band at 1 353 cm⁻¹ and the v_{sSO_2} band at *ca*. 1 163 cm⁻¹ observed for the sulphonamido group of $(\pm)^2$ exo-propylbicyclo[2.2.1]hept-3-endo-(phenylsulphonyl)amine, the shifts to lower wavenumbers ($\Delta v_{asSO_2} = 32$ and $\Delta v_{sSO_2} =$ ca. 13 cm⁻¹) of corresponding bands for (1) were observed in CCl_4 solutions. From these findings, it is clear that (1) in CCl_4 solution exists in the conformation with the twelve-membered ring due to the intramolecular hydrogen bonds of (I) between the carboxy and the sulphonamido groups such as observed with S-145.

The spectral behaviour of (1) in CHCl₃ solution resembled that in CCl_4 solution. This indicates that in $CHCl_3$ solution, (1) forms the intramolecular hydrogen bonds (I) as well as in CCl₄ solution. The ρ values of (1) are estimated to be 85% in CCl₄ and 54% in CHCl₃ solutions. As shown in Figure 2, (1) in CCl_4 solution gives two intramolecular hydrogen-bonded $v_{C=0}$ bands, suggesting that an equilibrium exists between two conformers of the twelve-membered ring. These findings are similar to those found ⁵ for S-145 and indicate that the conformation of (1) is identical to that of S-145 in CCl_4 and $CHCl_3$ solutions. This suggests that the conformation is affected little by the steric hindrance of the bicyclic ring as presumed for familiar types of U-46619 in the Introduction. Furthermore, we have reported ²⁴ that three stereoisomers of S-145, which possess TXA₂ receptor antagonist properties, have a conformation similar to that of S-145 because they display similar spectral behaviours. This also suggests that the conformation of the ring formed by (I) is not appreciably influenced by the configurations of the α - and ω-side chains in this case.

Intramolecular Hydrogen Bonds in (2) and (6).—For (2) in the CCl₄ solution as shown in Figure 3, the intensities of the free v_{OH} bands at 3 532 cm⁻¹ for the carboxy group and at

			CCl ₄ (cell le	ngth = 5.0 c) (H				CHCl ₃ (cell le	ngth = 1.0 cr	n)			
Compound	Assignme	ant"	v/cm ⁻¹	$\epsilon/dm^3 mo$ cm^{-1}	$\int_{cm^{-1}}^{1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	¹ N ^b (%)	$\frac{c/10^{-5}}{\mathrm{dm}^{-3}}$	v/cm ⁻¹	ε/ dm ³ mol cm ⁻¹	$ ^{-1} \Delta v_{1/2} $ cm ⁻¹	$\frac{A/10^{-8} \text{ cm}^2}{\text{s}^{-1} \text{ molecule}^{-1}}$	N ^b (%)	$c/10^{-4}$ mol dm ⁻³
		Ľ	3 578 0	20.8	779	٩٤		3 1907	3 513 5	53.3	44.8	707		27173
	(m)HO	H	3 237	2 2 8	217	232			c c	1	2			
	ν _{C≡0} (α)	н	1 756.0	73.5	20.2	18.1	14.6		1 748.1	183.1	33.1	83.1	45.8	
	, , ,	H	1 724.0	144.4	21.7	42.5			1 731.4	87.6	37.4	40.0		
		Ξu	1 710.7	350.6	17.2 0 CC	2.17			1 706.5	144.9	24.9	46.9		
	(m)HNV	H	3 249	113	69	95			~3 260	c.ct 3	r.	C.61		
(2)	$v_{OH}(\alpha)$	ы;	3 532.1	36.3 20	25.8	14.0		3.0392	3 514.3	57.2	48.9	38.1		2.8016
	(-) 	ΞĿ	3 154 1 756 8	90 110 A	233 203	108 77 5	0.00		C 1743 3	108.4	171	1276	7 A K	
	VC=0(α)	LH	1 732.7	217.8	22.9	74.3	0.77		1 715.2	118.4	30.7	50.2	0.4	
		Η	1 721.7	155.8	25.4	50.7								
	ν _{ОН} (ω)	ц	3 627.2	24.1	22.8	7.3			3 620.1	38.3	30.6	12.7		
		Η	3 403	35	178	72			3 392.4	30.3	136.0	49.2		
	ი ^{NH} (თ)	ц	3 424.7	54.0	16.8	13.5			3411	61	31	23		
		ц 1	3 409.7	30.1 18.5	21.5 36.5	8.0 0.4								
	$v_{C=0}(\omega)$	ц г	1 673.6	275.1	13.8	46.4			1 668.7	240.3	19.1	65.2		
		н	1 663	168	49	U			1 655.7 1 636.1	231.8 125.0	22.0 29.6	67.8 44.4		
(3)	$V_{OH}(\alpha)$ $V_{C=O}(\alpha)$	íц (ц	3 531.0 1 758.5	45.5 112.9	24.2 18.8	13.9 20.3	22.5	3.1818	3 515.2 1 743.8	16.7 70.7	45.1 35.1	9.1 33.8	17.7	2.9655
	$V_{asCO_2}^{-}(\alpha)$	ЭН	1 709.3 1 706.8	20.1 85.1	12.9 46.8	3.2 46.7	(2.4) ^e		1 690.0	89.0	51.7	~ 59		
	$v_{\rm NH_2}^{\rm V_{\rm NH_2}}$ (0) $\delta_{\rm NH_2}^{\rm V}$ (0)	нн	~ 2700	J					~ 2700 1636	ر 58	~83	c		
	ı													

Table 1. FTIR spectral data of compounds (1)+(5) in CCl₄ and CHCl₃ solutions.

			CCl4 (cell l	ength = 5.0 c	(m				CHCl ₃ (cell let	ngth = 1.0 c	(m			
Compour	d Assignme	nt "	v/cm ⁻¹	ɛ/dm³ mol cm ⁻¹	$ ^{-1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-5}$ mol dm ⁻³	v/cm ⁻¹	ε/dm ³ mo cm ⁻¹	$ ^{-1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-4}$ mol dm ⁻³
(4)	ν _{OH} (α) ν _{C=0} (α)	եր	3 531.2 1 755.2	25.7 55.8	25.6 20.4	8.2 14.3	11.1	3.3395	3 516.6 1 744.4	42.7 178.9	52.9 32.8	25.9 73.6	44.7	2.8491
	$V_{asCO_2}^{-}(\alpha)$	Нц	1 659.9 3 367 6	208.8 79.4	23.6 40.8	с 57 8			1 653.4 3 366.6	187.9	31.2 47.0	~71 76 5		
	V _{NH} (0)	. н	3 232.5	95.2	110.4	148.1			~ 3 226	c	2	2.0		
	ν _{NH2} ⁺ (ω)	ΗH	3 073.3 2 634	67.4 24	131.9 287	108.1			<i>5 5</i>					
	ν _{c=0} (ω)	<u>لد</u> (1 709.0	619.7	20.4	175.1			1 703.8	412.0	29.8	165.7		
		L	1 684.2	87.2	15.3	16.4			1 679.2	126.4	35.6	5.7.5		
(5)	ν _{OH} (α)	<u>لتر</u> (50 50 50				6	3.1604	3 513.1	56.6	45.6	34.0		2.8684
	V _{C=0} (α) V _{asCO2} -(α)	ιH	1 659.7	19.0 434.3	21.7	4.0 <i>C</i>	3.0		1 (44.5	228.0 185.8	28.3 28.3	65.8	7.10	
	ν _{NH} (ω)	F	3 379.4	130.7	28.2	50.4			3 386.0	111.2	31.5	47.6		
		ΞH	3 210.4	133.2	91.5	190.0			2.00.C C	1.00	7.47	0.02		
	ν _{NH} (ω)	Η	2 900	90	250	285			с					
		H	2 564	60	228	c			c					
	ν _{C=0} (ω)	ĹL.	1 706.6	1 254.8	13.9	264.9			1 698.9	651.2	31.4	259.6		
^a α and ω in pa bonded molecu parameters we propylbicyclo[^c ratio of dimers parameters cou	rentheses sho les $(N = \varepsilon/50$ re not obtai 2.1]hept-3-e ($\sigma = \varepsilon/822.6$ d not be obtai	w two $11.9 \times$ ned be <i>ndo</i> -(p x 100 ained b	side chains, r_1 100 in CCl ₄ at eccause the ba thenylsulphon 0), where 822. eccause the N	espectively, an nd $N = \varepsilon/399$. nd was overl yl) amine ⁵ bec 6 are the true value was very	$d F, H, and 9 \times 100 \text{ in}^{-2}$ apped by stanse the baper $v_{c=0}$ by per $v_{c=0}$ by small. ⁶ Th	I D also show free 5 CHCl ₃), where 5 solvent absorption in d is weak and v and of dimer in 'and of dimer in 'e peak was assign	se, intramol 01.9 and 39 ons. 4 The vas overlap CCI ₄ soluti fied to the i	lecular hydroge 9.9 are the s value s and A value ped by intramol intramolecular h	n-bonded, and ues of 100% fre es were estima lecular hydrog ameters could hydrogen-bono	dimer banc e $v_{C=0}$ band ited to be en-bonded v not be obta led v_{NH} ban	ls, respective of (10) in CC approximate on and v _{NH} ¹ ined because of urea gro	ly. ^b Ratio of nc 2l ₄ and CHCl ₃ s sly 14.6% of th pands. ^e The val e the band was up as in (VHI) i	on-intramol solutions, re le paramete ue given in very weak as well as in	cular hydrogen- spectively. ⁵ c The rs in $(\pm)2$ - exo - parenthesis is the and broad. ^{<i>a</i>} The (9).

J. CHEM. SOC. PERKIN TRANS. 2 1990

			CCI4 (cell)	length = 5.0	cm)				CHCl ₃ (cell	length = 1.0	cm)			
Compound	d Assignme	ent "	v/cm ⁻¹	ε/dm ³ m cm ⁻¹	$ \substack{ ol^{-1} \ \Delta v_{1/2} / \\ cm^{-1} } $	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻	-1 N ^b (%)	$c/10^{-5}$ mol dm ⁻³	v/cm ⁻¹	ε/dm ³ mol cm ⁻¹	$ ^{-1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-4}$ mol dm ⁻³
(9)	$V_{C=0}(\alpha)$	н	1 741.2	393.6	16.1	83.7	71.6	2.9587	1 730.8	375.5	23.8	114.8	92.3	2.6853
	(@) ⁷⁰⁷	Ηц	1 725.3 3 629.9	165.6 41.2	14.9 20.2	34.7 10.6			1 718.8 3 618.6	85.3 49.3	17.4 29.6	23.6 16.7		
	(m)HO.	H	3 445	23	126	36			3 424	20	127	30		
	ν _{NH} (ω)	ĹЦ, I	3 419.9	73.4	21.6	26.7			3 413.4	80.7	27.3	26.5		
	ν _{C=0} (ω)	ír, ír,	1 674.1	567.4	18.6	~124			1 669.1 1 656.1	331.5 303.1	18.2 19.1	88.2 70.5		
(8)	$V_{C=0}(\alpha)$	Ц	1 741.0	400.8	16.0	86.5	72.9	3.0037	1 729.5	420.7	27.3	150.1	103.5	2.7297
	(0)v	Ц	1 724.2 3 407.2	188.5 26.9	18.6 21.1	42.8 8.0								
	(-) HN	μ	3 378.4	94.6	34.1	46.2			3 371.7	116.5	50.0	78.6		
		Η	3 346	20	102	24								
	ν _{C=0} (ω)	ц	1 706.7	427.1	19.0	107.9			1 692.0	447.3	30.0	170.9		
		ц	1 687.5	195.3	22.0	54.5			1 666.9	104.2	32.2	40.9		
(6)	$V_{C=0}(\alpha)$	Ц	1 741.3	420.4	16.2	85.7	76.4	3.0137	1 730.1	416.7	25.4	133.3	102.5	3.0086
		Η	1 724.9	150.3	20.4	40.3								
	ر(0) NH(ш	3 394.5	142.3	27.9	52.1			3 387.5	139.2	30.2	56.4		
		Η	3 361.2	61.1	18.3	17.0			3 356.8	84.0	22.1	29.0		
		Η	3 315.6	13.6	50.2	8.9								
	ν _{C=0} (ω)	ᄕ	1 711.0	679.8	23.9	211.3			1 703.3	349.6	24.9	120.5		
		ĽL,							1 691.1	532.0	19.7	146.6		
" See Table 1, fo stearate in CCI.	ootnote a. ^b and CHCI-	Ratio c	of non-intrame	blecular hydr dv. ⁵ ° The pea	ogen-bonded ak was assigne	molecules (N	$= \epsilon/550.0 \times$	100 in CCl ₄ al nolecular hvdr	nd $N = \epsilon/406$ ogen-bonded	$.7 \times 100 \text{ in C}$	CHCl ₃), whe	re 550.0 and 406. as in (VI) (see tex	.7 are the ε	values of methy
			dar taua					- (

Table 2. FTIR spectral data of compounds (6), (8), and (9) in CCl₄ and CHCl₃ solutions.

Figure 3. FTIR spectra of (2) at 3.0392×10^{-5} mol dm⁻³ in CCl₄ solution in a 5.0 cm cell and the results of peak separation of their spectra.

3 627 cm⁻¹ for a hydroxy group remarkably decreased and new broad bands appeared at 3 154 and 3 403 cm⁻¹, respectively. The basis of this assignment is as follows: the latter broad band is analogous to that of the intramolecular hydrogen-bonded hydroxy group in the ω -side chain as in (6) described below. The intensities of the free v_{C=0} bands at 1 757 cm⁻¹ for the carboxy group and at 1 674 cm⁻¹ for the amido group in (2) also decreased and a new band appeared at 1 733 and 1 722 cm⁻¹ and at 1 663 cm⁻¹, respectively. The latter free v_{C=0} band agreed with that in (6). From these findings, it is obvious that (2) in CCl₄ solution exists in a conformation with a fourteenmembered ring formed by intramolecular hydrogen bonds of (II) between the α - and the ω -side chains. In CCl₄ solution,

(2) exhibits two intramolecular hydrogen-bonded $v_{C=0}$ bands for the carboxy group, suggesting that an equilibrium exists between two conformers in the fourteen-membered ring. The split free v_{NH} bands at 3 424 and 3 410 cm⁻¹ for the amido group of (2) were presumed to be due to the conformational change in this ring. The weak v_{NH} band in (2) was further observed at 3 363 cm⁻¹, indicative of the existence of other intramolecular hydrogen bonding. As its amount was estimated to be very small, the hydrogen bonding was neglected.

For (6) in CCl₄ solution, the intensities of the free $v_{C=0}$ band at 1 741 cm⁻¹ for the methyl ester and the free v_{OH} band at 3 630 cm⁻¹ for the hydroxy groups decreased and new bands were observed at 1 725 and 3 445 cm⁻¹, respectively. The latter new peak was assigned to the intramolecular hydrogen-bonded v_{OH} band, because its peak has a higher wavenumber than that of the free v_{NH} band of the amido group. In addition, the free $v_{C=0}$ band of the amido group was observed at 1 674 cm⁻¹. These results indicate that intramolecular hydrogen bond (III) involving a fifteen-membered ring in (6) is formed between the α - and ω -side chains. Since the spectral behaviours of (2) and (6)

in CHCl₃ solution are similar to those in CCl₄ solution, their compounds are anticipated to form intramolecular hydrogen bonds (II) and (III) in CHCl₃ solution, respectively. The ρ values of (2) and (6) are estimated to be 78 and 28% in CCl₄ and 25 and 8% in CHCl₃ solutions, respectively. The value of (6) is smaller than that of (2) because there is only one hydrogen bond in (6).

Intramolecular Hydrogen Bonds in (3) and (7).—For (3) in CCl₄ solution as shown in Figure 4, the intensities of the free v_{OH} band at 3 531 cm⁻¹ and the free $v_{C=O}$ band at 1 759 cm⁻¹ for the carboxy group remarkably decreased and new weak bands appeared at *ca.* 2 700 and 1 707 cm⁻¹. For (3) in CHCl₃ solution, the intensities of these bands at 3 515 and 1 744 cm⁻¹ also decreased and new weak bands appeared at *ca.* 2 700, 1 690, and 1 636 cm⁻¹. The v_{OH} and $v_{C=O}$ bands due to the carboxy group almost disappeared. In (3) with the carboxy and the amino groups in one molecule, intramolecular ionic hydrogen bonds as in the zwitterion form (IV) can be expected to occur. Therefore, in order to explain the changes in these spectra, we made assignments for the new weak bands of (3).

As the intermolecular ionic hydrogen bonds would be formed in the mixture of (10) and (13) as in (IV), the concentration dependence of FTIR spectra of this mixture was measured in CCl₄ solution. The spectra and the spectral parameters obtained are shown in Figure 5 and Table 3, respectively. In a highly concentrated CCl_4 solution, the intensities of the free v_{OH} band at 3 532 cm⁻¹ and the free $v_{C=0}$ band at 1 759 cm⁻¹ for the carboxy group remarkably decreased and new weak bands were observed at ca. 2 700, 1 699, and 1 621 cm⁻¹ in this mixture. The FTIR spectral data of the mixture of (10) and (13), and (3) to (5) and the ¹H NMR spectral data of its mixture and (3) observed at a concentration above 1×10^{-2} mol dm⁻³ are given in Table 4. The free v_{OH} , the free $v_{C=O}$, and the dimer $v_{C=O}$ bands for the carboxy group of these compounds almost disappeared in the CCl₄, CHCl₃, and CDCl₃ solutions examined, respectively.

For the mixture of (10) and (13) and for (3), three new bands were observed in the range between 1 750 and 1 500 cm⁻¹ and the middle bands disappeared on substitution of the deuterium atom by evaporating the acetone– D_2O solution. Furthermore, ¹H chemical shifts for NH₂⁺ groups of the mixture and (3) were

			CCI4 (cell 1	length = 5.0 c) (mc				CHCl ₃ (œll 1	length = 1.0	cm)			
Compound	l Assignn	ient "	v/cm ⁻¹	ε/dm ³ mo cm ⁻¹	$\int_{cm^{-1}}^{1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-5}$ mol dm ⁻³	v/cm ⁻¹	$\epsilon/dm^3 mc$ cm ⁻¹	$v_{1}^{-1} \Delta v_{1/2} / cm^{-1}$	$\frac{A/10^{-8} \mathrm{cm}^2}{\mathrm{s}^{-1} \mathrm{molecule}^{-1}}$	N ^b (%)	$c/10^{-4}$ mol dm ⁻³
(10)	VoH Vc=0	цгО	3 532.9 1 758.5 1 711.0	54.2 434.8 113.8	22.9 19.4 13.2	46.8 108.9 21.0	86.6 (13.8) ^c	3.2248	3 514.4 1 745.4 1 707.1	106.7 381.4 59.0	45.7 32.2 16.9	61.5 154.8 12.2	95.4 (8.6) ^c	3.0051
(11)	V _{ОН}	Ц	3 627.4	51.9	22.2	16.1		4.0251	3 614.0	51.6	35.1	21.7		3.1444
(12)	V _{NH} V _{C≕O}	ы ы ы	3 475.6 1 679.1	100.1 637.2	17.1 14.6	24.3 117.7		3.1739	3 467.6 1 669.6 1 658.3	103.9 210.3 378.5	22.7 17.2 17.1	32.0 44.2 96.9		2.9815
(13)	V _{NH}	ц	q					3.1613	q					3.3342
(14)	V _{NH} V _{C=O}	іц іц іц іц іц	3 443.7 3 428.3 1 728.6 1 707.2	73.3 198.0 183.7 488.8	11.4 13.8 9.6 17.9	10.3 38.0 21.6 117.5		3.1283	3 437.4 3 421.2 1 722.2 1 701.4 1 683.7	69.8 260.9 83.1 308.1 400.9	12.3 19.3 16.7 16.8 25.4	10.5 70.0 70.2 127.3		3.0200
(10) ^e and	V _{он} V _{C=0}	<u>ц</u> ц(3 532.4 1 758.3	149.6 414.3	23.0 20.3	49.6 113.2	82.5	3.9935	3 514.2 1 745.5	105.3 372.4	44.5 31.9	61.5 148.7 9	33.1	3.1349
(11)*	V _{ОН}	Ъг	1 /10.9 3 629.2	54.0	18.9	13.4	-(0.61)	4.0251	3 615.4	5 0.7	36.6 36.6	20.0	- (6.0)	3.1444
(10) ^{<i>e</i>} and	V _{OH} V _{C=O}	ы ы (3 532.5 1 758.6	153.0 417.0	23.3 19.3	48.3 110.6	83.1	3.1749	3 514.6 1 745.6	110.4 371.7	45.1 31.4	60.9 147.2 9	92.9 200	3.0950
(12) °	V _{NH} V _{C=0}	ם וג וג וג	1 710.8 3 475.6 1 679.2	90.1 95.3 589.0	11.6 18.1 14.1	12.8 27.3 108.4	,(0.11)	3.1812	1 707.3 3 467.5 1 669.2 1 658.0	33.7 112.1 225.5 385.1	15.4 23.6 17.2 16.9	12.3 32.9 47.4 101.1	,(6:/)	3.1369
(10) ^e and	V _{OH} V _{C=0}	ы, ы, I	3 532.4 1 758.8	149.5 425.8	23.8 18.8	49.6 106.1	84.8	4.0934						
(ل) د	V _{C=0}	Dг	1 710.9 1 741.4	143.4 555.4	13.6 16.1	27.2 121.4	$(17.4)^{t}$	3.8455						

ds (10)–(14) and 1:1 mixtures of (10) and (11). (10) and (2). (10) and (7). (10) and (13), and (14) in CCL, and CHCL, solutions. ŝ nectral data

			CCI4 (cell le	sngth = 5.0	cm)				CHCl ₃ (cel	l length = 1.(cm)			
Compound	l Assignm	ent "	v/cm ⁻¹	ɛ/dm³ m cm ⁻¹	$ol^{-1} \Delta v_{1/2} / cm^{-1}$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-5}$ mol dm ⁻³	v/cm ⁻¹	ɛ/dm³ mo cm ⁻¹	$[^{-1} \Delta v_{1/2} / cm^{-1}]$	$A/10^{-8}$ cm ² s ⁻¹ molecule ⁻¹	N ^b (%)	$c/10^{-4} \text{ mc}$
(10) ^e and	V _{ОН} V _{C=0}	ᇿᇿᅀᆿ	3 532.8 1 758.6 1 710.6	152.9 413.4 116.3	24.0 19.3 12.3	51.3 112.3 19.5	82.4 (14.1) ^c	3.5842	3 514.4 1 745.3 1 707.6	79.4 293.9 34.3	46.2 32.0 15.8 50	46.5 122.4 6.7	73.5 (5.0)°	2.9752
(13) °	VasCO ₂ ⁻ VNH	цг	þ					3.9517	1 000 d	17	R	2		3.2601
(10) ^e and	VoH	Ŀц i	3 532.1	11.5	23.3	3.4	u V	454.46 <i>°</i>						
	V _{C=0}	- D	1 711.2	94.8	18.8 14.0	8.8 18.4	0.5 (11.5)°							
(13) °	V _{asCO2} ⁻ V †	н	2000000000000000000000000000000000000	99.5 h	62.1	75.1	~	403 QK ^g						
	$\delta_{\rm NH_2}^{\rm NH_2}$	H	1 621.4	88.1	36.4	i								
(10) ^e and	V _{OH}	Ĺ	3 532.2	152.2	22.8	44.0		3.1310	3 514.4	108.5	46.9	63.2		3.0900
	V _{C=0}	Ч	1 758.4	406.6	19.7	106.5	81.0		1 745.3	378.7	32.3	154.7	94.7	
		D	1 709.8	135.6	15.0	28.3	(16.5) ^c		1 707.2	62.6	16.8	12.9	(9.2) ^c	
(14)*	V _{NH}	ír, ír	3 444.3 3 428 1	79.1 1957	9.5 15.0	9.2 38 9		3.1001	3 438.0 3 471 4	73.6 254.7	11.8 19.6	13.8 70.6		3.1263
	Vr=0	, íu	1 728.7	187.8	10.1	23.3			1 721.8	74.9	17.4	15.9		
	2	Ч	1 707.2	477.2	17.8	113.4			1 701.2	326.6	16.9	78.1		
		Ĺ							1 683.8	399.7	25.6	132.8		

J. CHEM. SOC. PERKIN TRANS. 2 1990

Figure 4. FTIR spectra of (3) at 3.1818 \times 10⁻⁵ mol dm⁻³ in CCl₄ solution in a 5.0 cm cell and the result of peak separation of a spectrum.

Figure 5. FTIR spectra of 1: 1 mixtures of (10) and (13) in CCl₄ solution and the results of peak separation of their spectra. Spectra were obtained using a 5.0-cm cell; (10) 3.5842×10^{-5} and (13) 3.9517×10^{-5} mol dm⁻³ (left) and a 0.5 cm cell; (10) 4.5446×10^{-3} and (13) 4.9396×10^{-3} mol dm⁻³ (right).

Table 4. FTIR spectral data of 1:1 mixture of (10) and (13) and compounds (3)–(5) and ¹H NMR spectral data of 1:1 mixture of (10) and (13) and compound (3).

Compound	v_{asCO_2} -/cm ⁻¹	$\delta_{\rm NH_2}{}^{+a}/cm^{-1}$	v_{sCO_2} -/cm ⁻¹	δ _{H(NH2⁺)} ^b /ppm	$c/10^{-2} \text{ mol dm}^{-3}$	Solvent
(10) + (13)	1 711.2	1 622.8	1 549.2		~4 ^d	CCL
(10) + (13)	1 687.4	1 622.8	1 549.2		~ 5 ^d	CHC1
(10) + (13)	1 687.7	1 622.9	1 548.6	6.02	1.2 d	CDCl ₁
(3)	1 685.3	1 623.7	1 551.7	5.68	1.3	CDCl
(3)	1 685.9	1 621.6	1 554.9		~4	CHCl
(4) ^e	~1 655		1 541.0		~2	CHCL
(5) ^f	1 655.0		1 540.8		~2	CHCl ₃
	Compound (10) + (13) (10) + (13) (10) + (13) (3) (3) (4) ^e (5) ^f	Compound v_{asCO_2} -/cm ⁻¹ (10) + (13)1 711.2(10) + (13)1 687.4(10) + (13)1 687.7(3)1 685.3(3)1 685.9(4) e~1 655(5) f1 655.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} On substitution of the deuterium atom, the band disappears. ^{*b*} Chemical shift of the NH₂+ protons from TMS. ^{*c*} Cell length is 0.1 cm for CDCl₃ and 0.025 cm for CHCl₃ and CCl₄. ^{*d*} The value is the concentration of (10) and (13). ^{*e*} The v_{C=0} bands of the urea group were observed at 1 706 and 1 687 cm⁻¹. ^{*f*} The v_{C=0} band of the urea group was observed at 1 699 cm⁻¹.

the peaks in the region of 1 623 cm⁻¹ were assigned to the δ_{NH_2} , band. However, the peaks in the region of 1 700 cm⁻¹ are thought to be at wavenumbers generally considered too high for the v_{asCO_2} band. It has been reported ²⁵ that the v_{asCO_2} bands for CF₃CO₂ and CCl₃CO₂ ions, which form a very strong hydrogen bond in CHCl₃ solution, appear at wavenumbers above 1 747 and 1 732 cm⁻¹, respectively, and that the formation of the CO₂-...HB⁺ bond causes the shift of the v_{asCO_2} band to a higher wavenumber. Based on these findings, the three peaks observed in our mixture and (3) were assigned to the bands as shown in Table 4. The broad peaks in the region of *ca.* 2 700 cm⁻¹ in these compounds were also assigned to the hydrogen-bonded v_{NH_2} , band. Clearly, (3) and the mixture of (10) and (13) in the highly concentrated CCl₄ and CHCl₃ solutions form intermolecular hydrogen bonds of the zwitterion form (IV), in spite of the fact that they are scarcely formed in dilute solutions.

Since the new bands observed for (3) in dilute CCl_4 and

 $CHCl_3$ solutions are similar to those for the mixture and (3) in the highly concentrated solutions, their bands were assigned as shown in Table 3. This indicates that the intramolecular ionic hydrogen bonds (IV) involving the twelve-membered ring in (3) are formed between the α - and ω -side chains in these solutions. The ρ values of (3) are estimated to be 75% in CCl₄ and 82% in CHCl₃ solutions. The latter is larger than the former and different from those in (1), (2), (4), and (5). Thus, intermolecular ionic hydrogen bonding might occur in the CHCl₃ solution of (3) as mentioned above. For the mixture of (10) and (7) in CCl_4 solution, the methyl ester group of (7) revealed only the free $v_{c=0}$ band at 1 741 cm⁻¹ and the spectral parameters of the mixture agreed well with the sum of those of the two compounds as shown in Table 3. This suggests that this mixture does not form the intermolecular hydrogen bond between (10) and (7) in the CCl_4 solution measured and (7) does not form the intramolecular one between the α - and ω -side chains.

Figure 6. FTIR spectra of (4) at 3.3395 × 10⁻⁵ mol dm⁻³ in CCl₄ solution in a 5.0 cm cell and the results of peak separation of their spectra.

Intramolecular Hydrogen Bonds in (4) and (8).-For (4) in CCl₄ solution as shown in Figure 6, the intensities of the free v_{OH} band at 3 531 cm⁻¹ and the free $v_{C=0}$ band at 1 755 cm⁻¹ for the carboxy group remarkably decreased and new bands appeared at 3 073, 2 634, and 1 660 cm⁻¹. Furthermore, the free $v_{\rm NH}$, the intramolecular hydrogen-bonded $v_{\rm NH}$, and two free $v_{C=0}$ bands of the urea group were observed at 3 368, 3 233, and 1 709 and 1 684 cm⁻¹, respectively. These free $v_{C=0}$ bands correspond to those at 1 707 and 1 688 cm⁻¹ for the urea group of (8). This indicates that a C=O bond of the urea in (4)does not take part in the intramolecular hydrogen bonding. In CHCl₃ solution at $ca. 2 \times 10^{-2}$ mol dm⁻³, the free v_{C=0} band of the carboxy group in (4) disappeared and new bands were observed at ca. 1655 and 1541 cm⁻¹. Because this spectral behaviour resembles that of the mixture of (10) and (13), the former and the latter peaks were assigned to the v_{asCO_2} - and v_{sCO_2} bands, respectively. In dilute CHCl₃ and CCl₄ solutions, (4) gave peaks at 1 653 and 1 660 cm⁻¹, respectively, which correspond to the former band. Therefore, these peaks were assigned to the v_{asCO_2} - band and the new bands at 3 073 and 2634 cm⁻¹, to the v_{NH_2} bands. From these results, we inferred that the intramolecular hydrogen bonds of the zwitterion form (Va) or (Vb) involving the thirteen-membered ring in (4) are formed between the α - and ω -side chains.

In general, 1,3-disubstituted ureas exist in Z/Z conformation as in (Va) and the free v_{NH} bands of their compounds appear at wavenumbers above 3 410 cm⁻¹ in CCl₄ solution,²⁶ but the band is shifted to a lower wavenumber by a conformational change from Z/Z to E/Z as in (Vb).^{26a,27} Since (4) gives the free v_{NH} band at 3 368 cm⁻¹, it seems reasonable to assume that its intramolecular hydrogen-bonded structure is (Vb) rather than (Va), but no direct evidence is available on these structures. The spectral behaviour of (4) in CHCl₃ solution is similar to that in CCl₄ solution. This suggests that in CHCl₃ solution, the intramolecular hydrogen-bonded structure of (4) is the same as that described above. The ρ value of (4) is estimated to be 89% in CCl₄ and 55% in CHCl₃ solutions.

For (8) in CCl₄ solution, the intensity of the free $v_{C=0}$ band at 1 741 cm⁻¹ for the methyl ester group decreased, a new band appeared at 1 724 cm⁻¹, and the intramolecular hydrogen

bonded $v_{\rm NH}$ band of the urea group was observed at 3 346 cm⁻¹. These indicate that the intramolecular hydrogen bond in (8) is formed between a C=O bond of the methyl ester and either of the NH bonds of the urea group. In CHCl₃ solution, (8) does not form the intramolecular hydrogen bonding because only the free $v_{\rm C=O}$ band for the methyl ester group was observed at 1 730 cm⁻¹. The ρ value of (8) is also estimated to be 27% in CCl₄ and 0% in CHCl₃ solutions.

In addition, the v_{NH} bands of the urea group in (8) were observed at 3 407 and 3 378 cm⁻¹ in CCl₄ and 3 372 cm⁻¹ in CHCl₃ solution; the band at 3 407 cm⁻¹ is small. Compared with the free v_{NH} bands of 1,3-disubstituted ureas,²⁶ these bands were shifted to lower wavenumbers. This suggests that the ω -side chain of (8) forms the intramolecular hydrogen bond as in (VI), when (8) does not form the intramolecular hydrogen bond between the α - and ω -side chains.

Intramolecular Hydrogen Bonds in (5) and (9).—For (5) in CCl_4 solution as shown in Figure 7, the free v_{OH} and $v_{C=0}$ bands of the carboxy group almost disappeared, new bands appeared at 2 900, 2 564, and 1 660 cm⁻¹, and the free $v_{C=0}$ bands of the urea group were observed at 3 379, 3 210, and 1 707 cm⁻¹, respectively. The last band corresponds to the free $v_{C=0}$ band at 1 711 cm⁻¹ for the urea group of (9) in CCl_4 solution. In CHCl₃ solution at *ca.* 2×10^{-2} mol dm⁻³, the free $v_{C=0}$ band of the carboxy group in (5) disappeared and new peaks were observed at 1 655 and 1 541 cm⁻¹, indicative of the v_{asCO_2} - and the results described above, the peak at 1 660 cm⁻¹ was assigned to the v_{asCO_2} - band and the peaks at 2 900 and 2 564 cm⁻¹ to the v_{NH} bands. These results suggest that the intramolecular hydrogen bonds of the zwitterion form (VIIa) or

Figure 7. FTIR spectra of (5) at 3.1604×10^{-5} mol dm⁻³ in CCl₄ solution in a 5.0 cm cell and the results of peak separation of their spectra.

Table 5. Energy difference (ΔE) between the conformers and torsion angle H-C_a-C_b-H (τ) for model compound (15) by MINDO/3 and AM1 calculations.

	MINDO/3		AM1	
Form ^a	$\Delta E/kJ \text{ mol}^{-1}$	τ/°	$\Delta E/\mathrm{kJ} \mathrm{mol}^{-1}$	τ/°
T ₁	0.0	179	0.0	-173
T_2	0.5	161	0.02	175
$\overline{G_1}$	4.3	98	3.3	93
C_1	4.8	58	5.0	43
C_2	4.9	- 57	6.4	- 28
G_2	5.4	- 87	2.5	-95

^a T, G, and C show trans, gauche, and cis forms, respectively.

(VIIa) involving the thirteen-membered ring in (5) are formed between the α - and ω -side chains. Since the shift to a lower wavenumber of the free v_{NH} band for the urea group was observed for (5), it seems reasonable to assume that the intramolecular hydrogen-bonded structure is (VIIb) rather than (VIIa), as described above, but no direct evidence is available on these structures. The spectral behaviour of (5) in CHCl₃ solution is analogous to that in CCl₄ solution. This suggests that the intramolecular hydrogen bonds of (5) in CHCl₃ solution are identical to those in CCl₄ solution. The ρ value is estimated to be 96% in CCl₄ and 43% in CHCl₃ solutions.

For (9) in the CCl₄ solution, the free $v_{C=0}$ band at 1741 cm⁻¹ for the methyl ester group decreased and the intramolecular hydrogen-bonded $v_{C=0}$ and v_{NH} bands were observed at 1725 cm⁻¹ for the ester group and 3316 cm⁻¹ for the urea group, respectively, but no change was observed for the CHCl₃ solution. This indicates that the intramolecular hydrogen bond in (9) is formed between the C=O bond of the methyl ester and either of the NH bonds of the urea group in CCl₄ solution and does not form in CHCl₃ solution. The ρ value of (9) is estimated to be 27% in CCl₄ and 0% in CHCl₃ solutions. Furthermore, the v_{NH} bands of the urea group in (9) were observed at 3 395 and 3 361 cm⁻¹ in CCl₄ and 3 388 and 3 357 cm⁻¹ in CHCl₃ solutions. Compared with the v_{NH} band of 1,3-disubstituted ureas,²⁶ these bands were shifted to lower wavenumbers. This suggests that an NH bond adjacent to the phenyl group of the

 ω -side chain in (9) is intramolecularly hydrogen-bonded to a lone pair electrons of N atom as in (VIII) as well as in 3-methyl-1,5-diphenylformazan²⁸ when (9) does not form the intramolecular hydrogen bond between the α - and ω -side chains.

Conformation in U-46619.—Previously, we have reported ⁵ that U-46619 with α - and ω -side chains and configuration that are the same as those of TXA₂ forms intramolecular hydrogen bonds involving the fifteen-membered ring in CCl₄ and CHCl₃ solutions as shown in Figure 8. The six conformers in U-46619 are possible by rotation along the C(12)–C(13) bond, but the geometry of this part is not clear. Accordingly, the geometries of these conformers for model compound (15) were optimized by MINDO/3²⁰ and AM1²¹ methods.

As shown in Table 5, conformer T_1 with C_b -H bond *trans* to C_a -H bond is the most stable among them in both the calculations. From this result, we assumed that H-12 and H-13 atoms of U-46619 are *trans* to each other in the conformation with the fifteen-membered ring formed by the hydrogen bonds. MINDO/3 and AM1 calculations were done for several model systems of 1,3-disubstituted ureas to predict the stable geometries. However, these calculations cannot yield accurate geometries of the ω -side chains in (4), (5), (8), and (9) because the theoretical predictions produce different results based on the two methods.

Geometrical Resemblance of (1)–(5).—The intramolecular hydrogen-bonded structures found in (1)–(5) in dilute CCl_4 and $CHCl_3$ solutions are shown in Figure 8, together with the ρ values. Freedom in the conformation of a large ring formed by these hydrogen bonds is very restricted owing to a bicyclic ring, a double bond, and the hydrogen bonds in these compounds. If the conformations illustrated in Figure 8 are adopted for (1)–(5), the geometrical arrangements of the functional groups in their compounds strongly resemble each other, although an equilibrium in (1) and (2) exists between the two ring conformers. The same statement is true for U-46619. The illustrated conformation of (1) is similar to that reported for S-145.⁵ Namely, we found a geometrical resemblance between the TXA₂ receptor antagonists S-145 and (1)–(5) and the agonist U-46619 in nonpolar solvents.

In conclusion, the FTIR method used should be helpful for elucidating the conformation of analogous compounds such as TXA_2 receptor agonists and antagonists containing non-vicinal carboxy and other functional groups in non-polar solvents. The information obtained should be useful for designing drugs and for confirming the conformational analyses using theoretical calculations.

Figure 8. Conformations and the formation ratios (ρ) of the intramolecular hydrogen-bonded molecules on U-46619 and (1)–(5) in CCl₄ and CHCl₃ solutions.

43

Acknowledgements

We thank Dr. M. Narisada for his helpful discussions and Dr. S. Hagishita and Dr. K. Seno for providing the samples. The technical co-operation of Mrs. (K. Sugita) Megumi is gratefully acknowledged.

References

- (a) S. S. Bhagwat, P. R. Hamann, and W. C. Still, J. Am. Chem. Soc., 1985, 107, 6372; (b) S. S. Bhagwat, P. R. Hamann, W. C. Still, S. Bunting, and F. A. Fitzpatrick, Nature (London), 1985, 315, 511.
- 2 M. Hamberg, J. Svensson, and B. Samuelsson, Proc. Natl. Acad. Sci. USA, 1975, 72, 2994.
- 3 (a) M. L. Ogletree, Fed. Proc. (Fed. Am. Soc. Ehp. Biol.), 1987, 46, 133;
 (b) A. M. Lefer and H. Darius, *ibid.*, 1987, 46, 144; (c) P. V. Halushka,
 D. E. Mais, and D. L. Saussy, Jr., *ibid.*, 1987, 46, 149.
- 4 (a) A. J. Wilkinson, C. M. Warwick, and R. H. Davies, Int. J. Quant. Chem. Quantum Biol. Symp., 1988, 15, 67; (b) R. H. Davies, B. Sheard, and P. J. Taylor, J. Pharm. Sci., 1979, 68, 396.
- 5 M. Takasuka, M. Yamakawa, and F. Watanabe, J. Chem. Soc., Perkin Trans. 2, 1989, 1173.
- 6 (a) G. DiMinno, V. Bertele, L. Bionchi, B. Barbieri, C. Cerletti, E. Dejana, G. D. Gaetano, and M. J. Silver, *Thromb. Haemostasis*, 1981, 45, 103; (b) G. L. Bundy, *Tetrahedron Lett.*, 1975, 1957.
- 7 M. Narisada, M. Ohtani, F. Watanabe, K. Uchida, H. Arita, M. Doteuchi, K. Hanasaki, H. Kakushi, K. Otani, and S. Hara, J. Med. Chem., 1988, 31, 1847.
- 8 K. Stegmeier, J. Pill, B. M. Beckmann, F. H. Schmidt, E. C. Witte, H. P. Wolff, and H. Patscheka, *Thrombosis Res.*, 1984, 35, 379.
- 9 N. K. Rogers and M. J. E. Sternberg, J. Mol. Biol., 1984, 174, 527.
- 10 K. Ezumi, M. Yamakawa, and M. Narisada, J. Med. Chem., 1990, 33, 1117.
- 11 (a) E. J. Corey, K. Narasaki, and M. Shibasaki, J. Am. Chem. Soc., 1976, 98, 6417; (b) J. L. Adams and B. W. Metcalf, Tetrahedron Lett., 1984, 25, 919.
- 12 (a) S. Ohuchida, N. Hamanaka, and M. Hayashi, *Tetrahedron Lett.*, 1981, **22**, 1349; (b) *ibid.*, p. 5301.
- 13 (a) M. F. Ansell, M. P. L. Caton, M. N. Palfreyman, and K. A. J. Stuttle, *Tetrahedron Lett.*, 1979, 20, 4497; (b) D. Ahnaroy, J. B. Smith, E. F. Smith, A. M. Lefer, R. L. Mogolda, and K. C. Nicolaou, *Adv. PG Thromb. Res.*, 1980, 6, 489.
- 14 K. Seno and S. Hagishita, Chem. Pharm. Bull., 1989, 37, 1524.
- 15 H. Suga, N. Hamanaka, K. Kondo, H. Miyake, S. Ohuchida, Y. Arai, and A. Kawasaki, Adv. Prostal. Thromb. Leukotri. Res., 1987, 17, 799.
- 16 D. J. Fitzgerald, J. Doran, E. Jackson, and G. A. Fitzgerald, J. Clin. Invest., 1986, 77, 496.
- 17 E. J. Kattelman, D. L. Venton, and F. M. C. De Farias, *Thromb. Res.*, 1986, **41**, 471.
- 18 R. A. Armstrong, R. L. Jones, V. Peesapati, S. G. Will, and N. H. Wilson, Br. J. Pharmacol., 1985, 84, 595.
- 19 H. W. Thompson and D. A. Jameson, Spectrochim. Acta, 1958, 13, 236.
- 20 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 1975, 97, 1285.
- 21 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
- 22 M. Tsuboi, Bull. Chem. Soc. Jpn., 1952, 25, 60.
- 23 (a) H. Tsubomura, J. Chem. Phys., 1956, 24, 927; (b) A. R. H. Cole, L. H. Litte, and A. Michell, Spectrochim. Acta, 1965, 21, 1169; (c) M. Takasuka, Y. Matsui, and T. Kubota, Spectrosc. Lett., 1976, 9, 821; (d) M. R. Basila, E. L. Saier, and L. R. Cousins, Spectrochim. Acta, 1965, 87, 1665.
- 24 M. Ohtani and M. Narisada, J. Med. Chem., 1990, 33, 1027.
- 25 (a) B. Brycki and M. Szafran, J. Chem. Soc., Perkin Trans. 2, 1984, 233; (b) Z. D. Szafran, A. Hrynio, and M. Szafran, Spectrochim. Acta Part A, 1987, 43, 1553.
- 26 (a) Y. Mido and T. Okuno, J. Mol. Struct., 1982, 82, 29; (b) A. T. Antonova, J. Mol. Struct., 1989, 197, 97; (c) B. Galabov, V. Kalcheva, and B. Hadjieva, J. Mol. Struct., 1987, 158, 259.
- 27 C. N. Rao, K. G. Rao, A. Goel, and D. Balasubramanian, J. Chem. Soc. A, 1971, 3077.
- 28 C. W. Cunningham, G. R. Burns, and V. McKee, J. Chem. Soc., Perkin Trans. 2, 1989, 1429.

Paper 0/00311E Received 19th January 1990 Accepted 18th April 1990